Skip to main content
Log in

Image of Mantle Plume Processes in the Satellite Magnetic Field over Africa

  • USE OF SPACE INFORMATION ABOUT THE EARTH GEOPHYSICAL AND GEOLOGICAL RESEARCH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The spatial distribution of the field of lithospheric magnetic anomalies carries information about its sources—deep tectonic structures—and reflects the processes occurring at mantle depths. Based on the geomagnetic data measured by the CHAMP satellite at an observation altitude of ~290 km, the lithospheric magnetic field parameters over the territory of Africa were calculated. A series of lithospheric magnetic anomalies of the total intensity Ta maps of various scales and degrees have been constructed. The distribution of Ta over the territories of Southern and East Africa is given. An analysis of lithospheric magnetic anomalies maps over the territories of African superplume influence showed good agreement with the existing hypothesis about the passage of the mantle superplume flow from the lower mantle to the upper mantle in the northeast direction and its further continuation under the East African rift zone. The parameters of the anomalous lithospheric magnetic field contain information about the magnetization of the lithosphere deep layers, reflecting the magnetic properties of large regional tectonic structures and the topography of the Curie surface, which is associated with the geothermal regime and tectonic setting at different levels of the lithosphere. This work shows the perspective of the geomagnetic field satellite observations using in the study of the tectonics of active zones and mapping of deep lithosphere heterogeneities in hard-to-reach areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Abramova, D.Yu. and Abramova, L.M., Lithospheric magnetic anomalies in the territory of Siberia (from measurements by the CHAMP satellite), Russ. Geol. Geophys., 2014, vol. 55, no. 7, pp. 854–863.

    Article  Google Scholar 

  2. Abramova, D.Yu., Abramova, L.M., Varentsov, I.M., and Filippov, S.V., Investigation of lithospheric magnetic anomalies of the ridge complex according to CHAMP satellite measurements, Geofiz. Issled., 2019, vol. 20, no. 2, pp. 5–18. https://doi.org/10.21455/gr2019.2-1

    Article  Google Scholar 

  3. Abramova, D.Yu., Filippov, S.V., and Abramova, L.M., Possible use of satellite geomagnetic observations in geological and tectonic studies of lithosphere structure, Izv., Atmos. Ocean. Phys., 2020a, vol. 56, no. 12, pp. 1695–1704. https://doi.org/10.1134/S0001433820120324

    Article  Google Scholar 

  4. Abramova, D.Yu., Abramova, L.M., Varentsov, Iv.M., and Lozovskii, I.N., Reflection of East European tectonics in lithospheric magnetic anomalies of the CHAMP satellite mission, in Voprosy teorii i praktiki geologicheskoi interpretatsii gravitatsionnykh, magnitnykh i elektricheskikh polei: Materialy 47-i sessii Mezhd. nauchn. seminara im. D.G. Uspenskogo–V.N. Strakhova (Issues in the Theory and Practice of Geological Interpretation of Gravitational, Magnetic, and Electric Fields: Proceedings of the 47th Session of the International Uspenskii–Strakhov Seminar), Voronezh: Nauchnaya kniga, 2020b, pp. 3–7.

  5. Abramova, L.M. and Abramova, D.Yu., Reflection of mantle-plume magmatism processes in lithospheric magnetic anomalies according to CHAMP satellite data, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 12, pp. 1741–1750. https://doi.org/10.1134/S0001433821120021

    Article  Google Scholar 

  6. Bagley, B. and Nyblade, A., Seismic anisotropy in eastern Africa, mantle flow, and the African superplume, Geophys. Res. Lett., 2013, vol. 40, pp. 1500–1505. https://doi.org/10.1002/grl.50315

    Article  Google Scholar 

  7. Borisenko, A.C., Sotnikov, V.I., Izokh, A.E., Polyakov, G.V., and Obolenskii, A.A., Permo-Triassic mineralization in Asia and its relation to plume magmatism, Russ. Geol. Geophys., 2006, vol. 47, no. 1, pp. 170–186.

    Google Scholar 

  8. Davies, G. and Pribac, F., Mesozoic seafloor subsidence and the Darwin rise: Past and present, in The Mesozoic Pacific: Geology, Tectonics, and Volcanism, Am. Geophys. Union, 1993, pp. 39–52.

    Google Scholar 

  9. Dobretsov, N.L., Geological implications of the thermochemical plume model, Russ. Geol. Geophys., 2008, vol. 49, no. 7, pp. 441–454.

    Article  Google Scholar 

  10. Forte, A., Quéré, S., Moucha, R., Simmons, N., Grand, S., Mitrovica, J., and Rowle, D., Joint seismic–geodynamic–mineral physical modeling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints, Earth Planet. Sci. Lett., 2010, vol. 295, pp. 329–341.

    Article  Google Scholar 

  11. Fouch, M.J., James, D.E., Van Decar, J., and van der Lee, S., and the Kaapvaal Seismic Group, Mantle seismic structure beneath the Kaapvaal and Zimbabwe cratons, South Afr. J. Geol., 2004, vol. 107, pp. 33–44. https://doi.org/10.2113/107.1-2.33

    Article  Google Scholar 

  12. Hansen, S. and Nyblade, A., The deep seismic structure of the Ethiopia/Afar hotspot and the African superplume, Geophys. J. Int., 2013, vol. 194, no. 1, pp. 118–124. https://doi.org/10.1093/gji/ggt116

    Article  Google Scholar 

  13. Hansen, S., Nyblade, A., and Benoit, M., Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: Implications for the origin of Cenozoic Afro–Arabian tectonism, Earth Planet. Sci. Lett., 2012, pp. 23–34. https://doi.org/10.1016/j.epsl.2011.12.023

  14. Loper, D.E., Mantle plumes, Tectonophysics, 1991, vol. 187, pp. 373–384.

    Article  Google Scholar 

  15. Maruyama, Sh., Plume tectonics, Geol. Soc. Jpn., 1994, vol. 100, pp. 24–34.

    Article  Google Scholar 

  16. Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, N., Childers, V., Dostaler, F., Fairhead, J.D., Finn, C., von Frese, R.R.B., Gaina, C., Golynsky, S., Kucks, R., Lühr, H., Milligan, P., et al., EMAG2: A 2‑arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements, Geochem. Geophys. Geosyst., 2009, vol. 10, no. 8, Q08005. https://doi.org/10.1029/2009GC002471

    Article  Google Scholar 

  17. Montelli, R., Nolet, G., Dahlen, F.A., and Masters, G., A catalogue of deep mantle plumes: new results from finite-frequency tomography, Geochem. Geophys. Geosyst., 2006, vol. 7, p. Q11007. https://doi.org/10.1029/2006GC001248

    Article  Google Scholar 

  18. Morgan, W., Convection plumes in the lower mantle, Nature, 1971, vol. 230, pp. 42–43.

    Article  Google Scholar 

  19. Pirajno, F., Ore Deposits and Mantle Plumes, Kluwer Academic, 2004.

    Google Scholar 

  20. Reigber, C., Lühr, H., and Schwintzer, P., CHAMP mission status, Adv. Space Res., 2002, vol. 30, no. 2, pp. 129–134. https://doi.org/10.1016/S0273-1177(02)00276-4

    Article  Google Scholar 

  21. Ritsema, J. and Allen, R., The elusive mantle plume, Earth Planet. Sci. Lett., 2003, vol. 207, pp. 1–12.

    Article  Google Scholar 

  22. Ritsema, J., van Heijst, H., and Woodhouse, J., Complex shear wave velocity structure beneath Africa and Iceland, Science, 1999, vol. 286, pp. 1925–1928.

    Article  Google Scholar 

  23. Simmons, N., Forte, A., and Grand, S., Thermochemical structure and dynamics of the African superplume, Geophys. Res. Lett., 2007, vol. 34, no. 2, p. L02301. https://doi.org/10.1029/2006GL028009

    Article  Google Scholar 

  24. Wessel, P. and Smith, W.H.F., The generic mapping tools, Technical reference and cookbook version 4.2, 2007. http://gmt.soest.hawaii.edu.

  25. Wilson, J., A possible origin of the Hawaiian Islands, Can. J. Phys., 1963, vol. 41, pp. 863–870.

    Article  Google Scholar 

  26. Yarmolyuk, V.V., Kovalenko, V.I., and Kuz’min, M.I., North Asian superplume activity in the Phanerozoic: Magmatism and deep geodynamics, Geotectonics, 2000, vol. 34, no. 5, pp. 343–366.

    Google Scholar 

  27. Zhao, D., Multiscale seismic tomography and mantle dynamics, Gondwana Res., 2009, vol. 15, pp. 297–323.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Abramova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramova, L.M., Varentsov, I.M. & Abramova, D.Y. Image of Mantle Plume Processes in the Satellite Magnetic Field over Africa. Izv. Atmos. Ocean. Phys. 59, 1045–1054 (2023). https://doi.org/10.1134/S0001433823090025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823090025

Keywords:

Navigation