Skip to main content
Log in

Mercury in Frozen Quaternary Sediments of the Spitsbergen Archipelago

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript


The climate warming–related degradation of permafrost can lead to the entry of climatically and biologically active substances, including mercury, into the biosphere; this work focuses on the analysis of the total content of mercury and organic carbon in 15 cores drilled in frozen Quaternary deposits of the Arctic Archipelago of Spitsbergen. The mercury content was additionally analyzed in bedrock samples, because the studied Quaternary deposits are formed by the weathering of the bedrock of the area. The results show that mercury concentrations in 157 studied samples of frozen Quaternary deposits range from 21 to 94 ng/g, with an average value of 40 ng/g. The expected correlation of mercury content with organic carbon content is not revealed. There are no trends in the accumulation of mercury depending on the lithological facies, geomorphological position, the time of sedimentation, or the freezing conditions. The average content of mercury in bedrock is relatively low, with a mean value of 8 ng/g. This means that the main source of mercury in frozen Quaternary deposits is not bedrock, but the formation of organic matter complexes or sorption on clay particles. In terms of the ongoing discussion about mercury input from permafrost to ecosystems, the results obtained from boreholes can be considered preindustrial background values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. Boike, J., Juszak, I., Lange, S., Chadburn, S., Burke, E., Overduin, P.P., Roth, K., Ippisch, O., Bornemann, N., Stern, L., Gouttevin, I., Hauber, E., and Westermann, S., A 20-year record (1998–2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen), Earth Syst. Sci. Data, 2018, vol. 10, pp. 355–390.

    Article  Google Scholar 

  2. Christiansen, H.H., Gilbert, G.L., Neumann, U., Demidov, N., Guglielmin, M., Isaksen, K., Osuch, M., and Boike, J., Ground ice content, drilling methods and equipment and permafrost dynamics in Svalbard 2016–2019 (PermaSval), The State of Environmental Science in Svalbard, SESS Rep., 2021, pp. 259–275.

  3. Demidov, V.E. and Demidov, N.E., Cryogenic processes, phenomena, and related hazards in the region of the Russian Barentsburg ore mine in the Spitsbergen Archipelago, GeoRisk, 2019, vol. 13, no. 4, pp. 48–62.

    Google Scholar 

  4. Demidov, N.E., Karaevskaya, E.S., Verkulich, S.R., Nikulina, A.L., and Savatyugin, L.M., First results of permafrost observations at the cryospheric test site of the Russian Scientific Center on the Spitsbergen Archipelago (RSCS), Probl. Arkt. Antarkt., 2016, no. 4, pp. 67–79.

  5. Demidov, N., Wetterich, S., Verkulich, S., Ekaykin, A., Meyer, H., Anisimov, M., Schirrmeister, L., Demidov, V., and Hodson, A.J., Geochemical signatures of pingo ice and its origin in Grøndalen, West Spitsbergen, Cryosphere, 2019, vol. 13, no. 11, pp. 3155–3169.

    Article  Google Scholar 

  6. Demidov, N.E., Borisik, A.L., Verkulich, S.R., Vetterikh, S., Gunar, A.Yu., Demidov, V.E., Zheltenkova, N.V., Koshurnikov, A.V., Mikhailova, V.M., Nikulina, A.L., Novikov, A.L., Savatyugin, L.M., Sirotkin, A.N., Terekhov, A.V., Ugryumov, Yu.V., and Schirrmeister, L., Geocryological and hydrogeological conditions of the western part of Nordenskiold Land (Spitsbergen Archipelago), Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 11, pp. 1376–1400.

    Article  Google Scholar 

  7. Demidov, V., Wetterich, S., Demidov, N., Schirrmeister, L., Verkulich, S.R., Koshurnikov, A., Gagarin, V., Ekaykin, A., Terekchov, A., Veres, A., and Kozachek, A., Pingo drilling reveals sodium-chloride-dominated massive ice in Grøndalen, Spitsbergen, Permafrost Periglacial Processes, 2021, vol. 32, no. 4, pp. 572–586.

    Article  Google Scholar 

  8. Demidov, V., Demidov, N., Verkulich, S., and Wetterich, S., Distribution of pingos on Svalbard, Geomorphology, 2022, vol. 412, p. 108326.

    Article  Google Scholar 

  9. Halbach, K., Mikkelsen, Q., Berg, T., and Steinnes, E., The presence of mercury and other trace metals in surface soils in the Norwegian Arctic, Chemosphere, 2017, vol. 188, pp. 567–574.

    Article  Google Scholar 

  10. Jiang, S., Liu, X., and Chen, Q., Distribution of total mercury and methylmercury in lake sediments in arctic Ny-Ålesund, Chemosphere, 2011, vol. 83, no. 8, pp. 1108–1116.

    Article  Google Scholar 

  11. Karaevskaya, E.S., Demidov, N.E., Kazantsev, V.S., Elizarov, I.M., Kaloshin, A.G., Petrov, A.L., Karlov, D.S., Schirrmeister, L., Belov, A.A., and Wetterich, S., Bacterial communities of frozen quaternary sediments of marine origin on the coast of Western Spitsbergen, Izv., Atmos. Ocean. Phys., 2021a, vol. 57, no. 8, pp. 895–917.

    Article  Google Scholar 

  12. Karaevskaya, E.S., Demidov, N.E., Kazantsev, V.S., Elizarov, I.M., Kaloshin, A.G., Petrov, A.L., Karlov, D.S., Schirrmeister, L., Belov, A.A., and Wetterich, S., Archaeal communities of frozen quaternary sediments of marine origin on the coast of Western Spitsbergen, Izv., Atmos. Ocean. Phys., 2021b, vol. 57, no. 10, pp. 1254–1270.

    Article  Google Scholar 

  13. Kim, H., Kwon, S.Y., Lee, K., Lim, D., Han, S., Kim, T., Joo, Y., Lim, J., Kang, M., and Nam, S., Input of terrestrial organic matter linked to deglaciation increased mercury transport to the Svalbard fjords, Sci. Rep., 2020, vol. 10, p. 3446.

    Article  Google Scholar 

  14. Lebedeva, N.V., Fateev, N.N., Nikulina, A.L., Zimina, O.L., and Garbul’, E.A., Mercury in the components of the ecosystem of Western Spitsbergen bays in the summer of 2017, Probl. Arkt. Antarkt., 2018, vol. 64, no. 3, pp. 311–325.

    Article  Google Scholar 

  15. Lim, A.G., Jiskra, M., Sonke, J.E., Loiko, S.V., Kosykh, N., and Pokrovsky, O.S., A revised pan-Arctic permafrost soil hg pool based on Western Siberian peat Hg and carbon observations, Biogeosciences, 2020, vol. 17, pp. 3083–3097.

    Article  Google Scholar 

  16. Olson, C., Jiskra, M., Biester, H., Chow, J., and Obrist, D., Mercury in active-layer tundra soils of Alaska: Concentrations, pools, origins, and spatial distribution, Global Biogeochem. Cycles, 2018, vol. 32, pp. 1058–1073.

    Article  Google Scholar 

  17. Rutkowski, C., Lenz, J., Lang, A., Wolter, J., Mothes, S., Reemtsma, T., Grosse, G., Ulrich, M., Fuchs, M., Schirrmeister, L., Fedorov, A., Grigoriev, M., Lantuit, H., and Strauss, J., Mercury in sediment core samples from deep Siberian icerich permafrost, Front. Earth Sci., 2021, vol. 9, p. 718153.

    Article  Google Scholar 

  18. Schaefer, K., Elshorbany, Y., Jafarov, E., Schuster, P., Striegl, R., Wickland, K., and Sunderland, E., Potential impacts of mercury released from thawing permafrost, Nat. Commun., 2020, vol. 11, p. 4650.

    Article  Google Scholar 

  19. Schuster, P.F., Schaefer, K.M., Aiken, G.R., Antweiler, R.C., Dewild, J.F., Gryziec, J.D., and Zhang, T., Permafrost stores a globally significant amount of mercury, Geophys. Res. Lett., 2018, vol. 45, pp. 1463–1471.

    Article  Google Scholar 

  20. Schuur, E., McGuire, A., Schadel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E., Schaefer, K., Turetsky, M.R., et al., Climate change and the permafrost carbon feedback, Nature, 2015, vol. 520, pp. 171–179.

    Article  Google Scholar 

  21. Tarbier, B., Hugelius, G., Sannel, A., Baptista-Salazar, C., and Jonsson, S., Permafrost thaw increases methylmercury formation in subarctic Fennoscandia, Environ. Sci. Technol., 2021, vol. 55, pp. 6710–6717.

    Article  Google Scholar 

Download references


We express our gratitude to the RAE-Sh logistics center for supporting field work and to the staff of the RAE-Sh chemical analytical laboratory in Barentsburg, namely, N.N. Fateev, V.M. Mikhailova, and V.V. Boyko for determining the mercury content in the samples, as well as specialists from the Carbon and Nitrogen Laboratory of the Alfred Wegener Institute of the Center for Polar and Marine Research (Potsdam, Germany) for analyzing the organic carbon content.


This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. E. Demidov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidov, N.E., Guzeva, A.V., Nikulina, A.L. et al. Mercury in Frozen Quaternary Sediments of the Spitsbergen Archipelago. Izv. Atmos. Ocean. Phys. 59, 982–989 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: