Skip to main content
Log in

Evaluating the Impact of the Development of the Chayanda Field on Surface Ground Subsidence

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this paper we present the results of studies of the Botuobin, Talakh, and Khamakin reservoirs of the Vendian period in the Chayanda hydrocarbon field (Eastern Siberia). Based on an analysis of variations in the petrophysical parameters of reservoirs upon an increase in effective pressure from 37 to 57 MPa, i.e., under conditions simulating the development of a field for depletion, changes in the volume and compressibility of the pore space are estimated. In this case, the porosity coefficient decreases by 0.043 abs. %, while the compressibility of the pore space decreases by 0.228 1/GPa. The average volumetric compression strain increases by 0.096%, which means a reduction in the volume of developed reservoirs by almost 0.1% relative to the beginning of development. A deformable formation model developed by Yu.O. Kuzmin based on the geodynamic history of the development of deposits is applied to estimate the magnitude of possible subsidence of the ground surface during development. The maximal values of possible surface subsidence (drawdowns) upon a decrease in reservoir fluid pressure by 5 MPa are estimated to be 0.33 m with allowance for the dynamics of petrophysical parameters and 0.335 m with no allowance for it. The maximal drawdowns are already estimated at 0.60 and 0.65 m upon a decrease in reservoir pressure by 10 MPa and 0.78 and 0.83 m upon a complete depletion of reservoir energy, respectively. The results of the studies show that taking into account the changes in petrophysical characteristics caused by the field development processes alters the estimate of the deformation state of the rock massif and the ground surface above the deposit and, consequently, the estimate of the level of geodynamic risk of oil-and-gas complex objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Addis, M.A., The geology of geomechanics: Petroleum geomechanical engineering in field development planning, Geol. Soc. London: Spec. Publ., 2018, vol. 458, no. 1. https://doi.org/10.1144/SP458.7

  2. Chernykh, V.A., Gidrogeomekhanika neftegazodobychi (Hydrogeomechanics of Oil and Gas Production), Moscow: Gazprom VNIIGAZ, 2001.

  3. Dyskin, A., Pasternak, E., and Shapiro, S., Fracture mechanics approach to the problem of subsidence induced by resource extraction, Eng. Fract. Mech., 2020, vol. 236, no. 9, pp. 107–130.

    Article  Google Scholar 

  4. Fokker, P. and Orlic, B., Semi-analytic modelling of subsidence, J. Int. Assoc. Math. Geol., 2006, vol. 38, no. 5, pp. 565–589.

    Article  Google Scholar 

  5. Gatiyatullin, R.N., Kuzmin, D.K., and Fattakhov, E.A., Analysis of the results of long-term geodetic observations at the ultra-viscous oil field, south-east of Tatarstan, Seism. Instrum., 2021, vol. 58, no. 4, pp. 270–282. https://doi.org/10.3103/S0747923922030057

    Article  Google Scholar 

  6. Geertsma, J., Land subsidence above compacting oil and gas reservoirs, J. Petrol. Technol., 1973, vol. 50, no. 6, pp. 734–744.

    Article  Google Scholar 

  7. Izyumov, S.F. and Kuzmin, Yu.O., Study of the recent geodynamic processes in the Kopet-Dag region, Izv., Phys. Solid Earth, 2014, vol. 50, no. 6, pp. 719–731. https://doi.org/10.1134/S1069351314060019

    Article  Google Scholar 

  8. Kashnikov, Yu.A. and Ashikhmin, S.G., Mekhanika gornykh porod pri razrabotke mestorozhdenii uglevodorodnogo syr’ya (Rock Mechanics in the Development of Hydrocarbon Deposits), Moscow: Nedra-Biznestsentr, 2007.

  9. Kreknin, S.G., Pogretskii, A.V., Krylov, D.N., Trukhin, V.Yu., and Sitdikov, N.R., Modern geological and geophysical model of the Chayanda oil and gas condensate field, Geol. Nefti Gaza, 2016, no. 2, pp. 44–55.

  10. Kuzmin, D.K., Modeling Earth’s surface displacements obtained by various satellites with a built-in SAR-module (exemplified by monitoring of oil and gas fields), Probl. Nedropol’zovaniya, 2021, no. 2, pp. 94–104. https://doi.org/10.25635/2313-1586.2021.02.094

  11. Kuzmin, Yu.O., Sovremennaya geodinamika i otsenka geodinamicheskogo riska pri nedropol’zovanii (Modern Geodynamics and Assessment of Geodynamic Risk in Subsoil Use), Moscow: AEN, 1999.

  12. Kuzmin, Yu.O., Modern anomalous subsoil geodynamics induced by minor natural and anthropogenic impacts, Gorn. Inf.-Anal. Byull., 2002, no. 9, pp. 48–54.

  13. Kuzmin, Yu.O., Problems in studying deformation processes in modern geodynamics, Gorn. Inf.-Anal. Byull., 2008, no. 3, pp. 98–107.

  14. Kuzmin, Yu.O., The topical problems of identifying the results of the observations in recent geodynamics, Izv., Phys. Solid Earth, 2014, vol. 50, no. 5, pp. 641–654. https://doi.org/10.1134/S1069351314050048

    Article  Google Scholar 

  15. Kuzmin, Yu.O., Identification of the results of repeated geodetic observations in assessing the geodynamic hazard of subsoil use objects, Vestn. Sib. Gos. Univ. Geosist. Tekhnol., 2018, vol. 23, no. 4, pp. 46–66.

    Google Scholar 

  16. Kuzmin, Yu.O., Topical issues of geodetic measurements in geodynamic monitoring of oil and gas complex objects, Vestn. Sib. Gos. Univ. Geosist. Tekhnol., 2020, vol. 25, no. 1, pp. 43–54. https://doi.org/10.33764/2411-1759-2020-25-1-43-54

    Article  Google Scholar 

  17. Kuzmin, Yu.O., Deformation consequences of the development of oil and gas field, Izv. Atmos. Ocean. Phys., 2021, vol. 57, no. 11, pp. 1479–1497. https://doi.org/10.1134/S0001433821110062

    Article  Google Scholar 

  18. Kuzmin, Yu.O., Recent volumetric deformations of fault zones, Izv., Phys. Solid Earth, 2022, vol. 58, no. 4, pp. 445–458. https://doi.org/10.1134/S1069351322040061

    Article  Google Scholar 

  19. Kuzmin, Yu.O. and Nikonov, A.I., Geodynamic monitoring of oil and gas facilities, in Fundamental’nyi bazis novykh tekhnologii neftyanoi i gazovoi promyshlennosti (Fundamental Basis of New Technologies in The Oil and Gas Industry), Moscow: GEOS, 2002, vol. 2, pp. 427–433.

  20. Kuzmin, Yu.O., Deshcherevskii, A.V., Fattakhov, E.A., Kuz’min, D.K., Kazakov, A.A., and Aman, D.V., Inclinometric observations at the Korchagin deposit, Izv. Atmos. Ocean. Phys., 2018, vol. 54, no. 8, pp. 932–940. https://doi.org/10.1134/S0001433818080066

    Article  Google Scholar 

  21. Kuzmin, Yu.O., Deshcherevskii, A.V., Fattakhov, E.A., Kuz’min, D.K., and Aman, D.V., Analysis of the results of deformation monitoring by the inclinometer system at the Vladimir Filanovsky field, 2019, Izv. Atmos. Ocean. Phys., 2019, vol. 55, no. 11, pp. 1659–1666. https://doi.org/10.1134/S0001433819110094

    Article  Google Scholar 

  22. Ma, X. and Zoback, M.D., Laboratory experiments simulating poroelastic stress changes associated with depletion and injection in low-porosity sedimentary rocks, J. Geophys. Res.: Solid Earth, 2017, vol. 122, pp. 1–26.

    Google Scholar 

  23. Marketos, G., Govers, R., and Spiers, C.J., Ground motions induced by a producing hydrocarbon reservoir that is overlain by a viscoelastic rock salt layer: A numerical model, Geophys. J. Int., 2015, vol. 203, pp. 228–242.

    Article  Google Scholar 

  24. Mavko, A.G., Mukerji, T., and Dvorkin, J., The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, Cambridge: Cambridge Univ. Press, 1998.

    Google Scholar 

  25. Mindlin, R. and Cheng, D.H., Nuclei of strain in the semi-infinite solid, J. Appl. Phys., 1950, vol. 21, no. 9, pp. 926–930.

    Article  Google Scholar 

  26. Muñoz, L.F.P. and Roehl, D., An analytical solution for displacements due to reservoir compaction under arbitrary pressure changes, Appl. Math. Modell., 2017, vol. 52, no. 6. https://doi.org/10.1016/j.apm.2017.06.023

  27. Rudnicki, J.W., Models for compaction band propagation, in Rock Physics and Geomechanics in the Study of Reservoirs and Repositories, David, C. and Racalec-Dupin, L.M., Eds., London: Geol. Soc., 2007, vol. 284, pp. 107–125.

    Google Scholar 

  28. Segall, P., Stress and subsidence resulting from subsurface fluid withdrawal in the epicentral region of the 1983 Coalinga earthquake, J. Geophys. Res., 1985, vol. 90, no. B8, pp. 6801–6816.

    Article  Google Scholar 

  29. Segall, P., Induced stresses due to fluid extraction from axisymmetric reservoirs, Pure Appl. Geophys., 1992, vol. 139, nos. 3–4, pp. 535–560.

    Article  Google Scholar 

  30. Sroka, A. and Hejmanowski, R., Subsidence prediction caused by the oil and gas development, in Proc. of 12th FIG Symposium, 2006, pp. 1–8.

  31. Subsidence due to Fluid Withdrawal, Chilingarian, G.V., Donaldson, E.C., and Yen, T.F., Eds., Amsterdam: Elsevier, 1995.

    Google Scholar 

  32. Tourenq, C., Fourmaintraux, D., and Denis, A., Propagation des ondes et discontinuités des roches, in Mécanique des roches appliquée aux problèmes d’exploration et de production pétrolières, Maury, V. and Fourmaintraux, D., Eds., Boussens: Société nationale Elf Aquitaine, 1993; Moscow: Mir, 1994, pp. 176–184.

  33. Vasil’ev, Yu.V., Plavnik, A.G., and Radchenko, A.V., Anthropogenic impact of hydrocarbon extraction on modern geodynamics of the Samotlor field, Marksheiderskii Vestn., 2017, no. 4, pp. 43–51.

  34. Vasil’ev, Yu.V., Misyurev, D.A., Inozemtsev, D.P., and Bezhan, P.I., Analysis of the results of geodynamic monitoring of the Kogalym field of OOO LUKOIL-AIK, Izv. Vyssh. Uchebn. Zaved., Neft Gaz, 2019, no. 6, pp. 31–41. https://doi.org/10.31660/0445-0108-2019-6-31-41

  35. Vasil’ev, Yu.V., Mimeev, M.S., and Myuserev, D.A., Mining and geological substantiation of the need to create a geodynamic test site at the Poselkovoe field of OOO RussNeft, Neft’ Gaz: Opyt Innov., 2020, vol. 4, no. 1, pp. 15–23.

    Google Scholar 

  36. Walsh, J.B., Subsidence above a planar reservoir, J. Geophys. Res., 2002, vol. 107, no. B9, pp. 2202–2211.

    Article  Google Scholar 

  37. Yang, Sh., Fundamentals of Petrophysics, Beijing: China Univ. of Petroleum, Springer, 2016.

    Google Scholar 

  38. Zhukov, V.S., Assessment of changes in the physical properties of reservoirs due to the development of oil and gas fields, Gorn. Inf.-Anal. Byull., 2010, no. 6, pp. 341–349.

  39. Zhukov, V.S., Assessment of reservoir fracturing from the propagation velocity of elastic waves, Vesti Gaz. Nauki, 2012, no. 1, pp. 148–152.

  40. Zhukov, V.S. Evaluation of strength and elastic properties of rocks of the Dagi level of the Sakhalin shelf, Gorn. Inf.-Anal. Byull., 2020, no. 4, pp. 44–57. https://doi.org/10.25018/0236-1493-2020-4-0-44-57

  41. Zhukov, V.S. and Kuz’min, Yu.O., The influence of fracturing of the rocks and model materials on P-wave propagation velocity: Experimental studies, Izv., Phys. Solid Earth, 2020, vol. 56, no. 4, pp. 470–480. https://doi.org/10.1134/S1069351320040102

    Article  Google Scholar 

  42. Zhukov, V.S. and Kuz’min, Yu.O., Experimental evaluation of the compressibility coefficients of fractures and intergranular pores of an oil and gas reservoir, Zap. Gorn. Inst., 2021, vol. 251, pp. 658–666. https://doi.org/10.31897/PMI.2021.5.5

    Article  Google Scholar 

  43. Zhukov, V.S. and Kuz’min, Yu.O., Comparison of approaches to assessing the compressibility of the pore space, Zap. Gorn. Inst., 2022, vol. 258, pp. 1008–1017. https://doi.org/10.31897/PMI.2022.97

    Article  Google Scholar 

  44. Zhukov, V.S. and Lyugai, D.V., Opredelenie fil’tratsionno–emkostnykh i uprugikh svoistv i elektricheskikh parametrov obraztsov gornykh porod pri modelirovanii plastovykh uslovii (Determination of Porosity–Permeability and Elastic Properties and Electrical Parameters of Rock Samples from the Simulation of Reservoir Conditions), Moscow: Gazprom VNIIGAZ, 2016.

  45. Zimmerman, R.W., Compressibility of Sandstones, Amsterdam: Elsevier, 1991.

    Google Scholar 

Download references

Funding

This work was supported by the State Task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Zhukov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.S., Kuzmin, D.K. Evaluating the Impact of the Development of the Chayanda Field on Surface Ground Subsidence. Izv. Atmos. Ocean. Phys. 59, 827–837 (2023). https://doi.org/10.1134/S000143382307006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382307006X

Keywords:

Navigation