Skip to main content
Log in

Stability of the Vertical Distribution of Dust Aerosol under Weak and Moderate Winds

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The profiles of dust aerosol mass concentration obtained with multilevel (0.2, 0.4, 0.8, 1.6, and 3.2 m) daytime measurements in arid conditions in 2020–2022 show a power dependence on height. We distinguish three main types of changes in concentration with height: (a) in low wind (degrees are close to –0.5), (b) burst changes in concentration when wind increases (degrees reach and exceed –1), and (c) inversions (concentration increases with height at two or three lower levels of measurements): weak (about –20 mkg/cm3) and significant (more than 50 mkg/cm3). The power dependence of –0.5 is explained by the collective effect of the rise of the ensemble of closely located bubbles of air warmed around the dust particles. In weak and moderate winds, this mode is more common. Burst changes in concentration are associated with the emergence of turbulent structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Alfaro, S.C., Gaudichet, A., Gomes, L., and Maillé, M., Modeling the size distribution of a soil aerosol produced by sandblasting, J. Geophys. Res.: Atmos., 1997, vol. 102, pp. 11239–11249.

    Article  Google Scholar 

  2. Barenblatt, G.I. and Golitsyn, G.S., Lokal’naya struktura razvitykh pyl’nykh bur’ (Local Structure of Developed Dust Storms), Moscow: Moscow State University, 1973.

  3. Batchelor, G.K., Heat convection and buoyancy effects in fluids, Quart. J. R. Met. Soc, 1954, vol. 80, no. 345, pp. 339–358.

    Article  Google Scholar 

  4. Byutner, E.K., Dinamika pripoverkhnostnogo sloya vozdukha (Dynamics of the Air Near-Surface Layer), Leningrad: Gidrometizdat, 1978.

  5. Chkhetiani, O.G. and Golitsyn, G.S., Detection and dispersion of diffusion tracer spots and their lifetimes, Dokl. Math., 2014, vol. 89, no. 2, pp. 245–249.

    Article  Google Scholar 

  6. Chkhetiani, O.G., Gledzer, E.B., Artamonova, M.S., and Iordanskii, M.A., Dust resuspension under weak wind conditions: direct observations and model, Atmos. Chem. Phys., 2012, vol. 12, no. 11, pp. 5147–5162.

    Article  Google Scholar 

  7. Fernandes, R., Dupont, S., and Lamaud, E., Investigating the role of deposition on the size distribution of near-surface dust flux during erosion events, Aeolian Res., 2019, vol. 37, pp. 32–43.

    Article  Google Scholar 

  8. Gillette, D.A., Fryrear, D.W., Gill, T.E., Ley, T., Cahill, T.A., and Gearhart, E.A., Relation of vertical flux of particles smaller than 10 μm to total aeolian horizontal mass flux at Owens Lake, J. Geophys. Res.: Atmos., 1997, vol. 102, pp. 26009–26015.

    Article  Google Scholar 

  9. Gillies, J.A. and Berkofsky, L., Eolian suspension above the saltation layer: The concentration profile, J. Sediment. Res., 2004, vol. 74, no. 2, pp. 176–183.

    Article  Google Scholar 

  10. Houser, C.A. and Nickling, W.G., The emission and vertical flux of particulate matter <10 μm from a disturbed clay-crusted surface, Sedimentology, 2001, vol. 48, no. 2, pp. 255–267.

    Article  Google Scholar 

  11. Ingel’, L.Kh., On the limiting laws of buoyant convective jets and thermals from local sources of a heat releasing impurity, J. Eng. Phys. Thermophys., 2019, vol. 92, no. 6, pp. 1481–1488.

    Article  Google Scholar 

  12. Ishizuka, M., Mikami, M., Leys, J., Yamada, Y., Heidenreich, S., Shao, Y., and McTainsh, G.H., Effects of soil moisture and dried raindroplet crust on saltation and dust emission, J. Geophys. Res.: Atmos., 2008, vol. 113, p. D24.

    Google Scholar 

  13. Ishizuka, M., Mikami, M., Leys, J.F., Shao, Y., Yamada, Y., and Heidenreich, S., Power law relation between size-resolved vertical dust flux and friction velocity measured in a fallow wheat field, Aeolian Res., 2014, vol. 12, pp. 87–99.

    Article  Google Scholar 

  14. Ju, T., Li, X., Zhang, H., Cai, X., and Song, Y., Parameterization of dust flux emitted by convective turbulent dust emission (CTDE) over the Horqin Sandy Land area, Atmos. Environ., 2018, vol. 187, pp. 62–69.

    Article  Google Scholar 

  15. Khalfallah, B., Bouet, C., Labiadh, M.T., Alfaro, S.C., Bergametti, G., Marticorena, B., and Rajot, J.L., Influence of atmospheric stability on the size distribution of the vertical dust flux measured in eroding conditions over a flat bare sandy field, J. Geophys. Res.: Atmos., 2020, vol. 125, no. 4, p. e2019JD031185.

  16. Klose, M. and Shao, Y., Stochastic parameterization of dust emission and application to convective atmospheric conditions, Atmos. Chem. Phys., 2012, vol. 12, no. 16, pp. 7309–7320.

    Article  Google Scholar 

  17. Klose, M. and Shao, Y., Large-eddy simulation of turbulent dust emission, Aeolian Res., 2013, vol. 8, pp. 49–58.

    Article  Google Scholar 

  18. Lanigan, D., Stout, J., and Anderson, W., Atmospheric stability and diurnal patterns of aeolian saltation on the Llano Estacado, Aeolian Res., 2016, vol. 21, pp. 131–137.

    Article  Google Scholar 

  19. Li, X.L., Klose, M., Shao, Y., and Zhang, H.S., Convective turbulent dust emission (CTDE) observed over Horqin Sandy Land area and validation of a CTDE scheme, J. Geophys. Res.: Atmos., 2014, vol. 119, no. 16, pp. 9980–9992.

    Article  Google Scholar 

  20. Macpherson, T., Nickling, W.G., Gillies, J.A., and Etyemezian, V., Dust emissions from undisturbed and disturbed supply-limited desert surfaces, J. Geophys. Res.: Earth Surf., 2008, vol. 113, no, F2.

  21. Maher, B.A., Prospero, J.M., Mackie, D., Gaiero, D., Hesse, P.P., and Balkanski, Y., Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the Last Glacial Maximum, Earth Sci. Rev., 2010, vol. 99, nos. 1–2, pp. 61–97.

    Article  Google Scholar 

  22. Malinovskaya, E.A., Chkhetiani, O.G., and Maksimenkov, L.O., Influence of wind direction on the size distribution of aeolian microparticles, Izv., Atmos., Ocean. Phys. 2021, vol. 57, no. 5, pp. 472–485.

    Article  Google Scholar 

  23. Malinovskaya, E.A., Chkhetiani, O.G., Golitsyn, G.S., and Lebedev, V.A., Vertical distribution of dust aerosol under conditions of weak and moderate winds, Dokl. Earth Sci., 2023, vol. 509, no. 2, pp. 222–229.

    Article  Google Scholar 

  24. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika (Statistical Hydromechanics), vol. 1: Teoriya turbulentnosti (Theory of Turbulence), St. Petersburg: Gidrometeoizdat, 1992.

  25. Neuman, C.M.K., Boulton, J.W., and Sanderson, S., Wind tunnel simulation of environmental controls on fugitive dust emissions from mine tailings, Atmos. Environ., 2009, vol. 43, no. 3, pp. 520–529.

    Article  Google Scholar 

  26. Semenov, O.E., Vvedenie v eksperimental’nuyu meteorologiyu i klimatologiyu peschanykh bur' (Introduction to Experimental Meteorology and Climatology of Dust Storms), Moscow: Fizmatkniga, 2020.

  27. Shao, Y., A model for mineral dust emission, J. Geophys. Res.: Atmos., 2001, vol. 106, pp. 20239–20254.

    Article  Google Scholar 

  28. Shao, Y., Physics and Modeling of Wind Erosion, Springer, 2008.

    Google Scholar 

  29. Vasil’chenko, I.V., Approximate thermodynamic analysis of local upward currents in the atmosphere, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1957, no. 72, pp. 3–18.

  30. Vul’fson, N.I., Issledovanie konvektivnykh dvizhenii v svobodnoi atmosfere (Study of Convective Motions in the Free Atmosphere), Moscow: Akad. Nauk SSSR, 1961.

  31. Zel’dovich, Ya.B., Limiting laws of freely rising convective flows, Zh. Eksp. Teor. Fiz., 1937, vol. 7, no. 12, pp. 1463–1465.

    Google Scholar 

Download references

Funding

This research was carried out with the support from the Russian Science Foundation, project no. 23-27-00480 “Investigation into the Generation and Removal of Dust Aerosol over Arid Territories under Conditions of Relief and Temperature Inhomogeneities.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Malinovskaya.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This article was prepared on the basis of an oral report presented at the IV All-Russian Conference Turbulence, Atmospheric and Climate Dynamics with international participation, dedicated to the memory of Academician A.M. Obukhov (Moscow, November 22–24, 2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinovskaya, E.A., Chkhetiani, O.G., Golitsyn, G.S. et al. Stability of the Vertical Distribution of Dust Aerosol under Weak and Moderate Winds. Izv. Atmos. Ocean. Phys. 59, 548–558 (2023). https://doi.org/10.1134/S0001433823050080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823050080

Keywords:

Navigation