Skip to main content
Log in

Stratospheric Ozone Content Variations Over the City of Obninsk from Data of Lidar and Satellite Measurements

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An analysis of variations in the height-integrated stratospheric ozone content in layers of 13–18, 18–23, and 23–30 km according to the data of lidar and satellite measurements in 2014–2022 over the city of Obninsk (55.1° N, 36.6° E) is presented. The simulation of interannual ozone variations for individual quarters of the year is carried out using the method of multiple linear regression. Quasi-biennial oscillations (QBO) of the equatorial wind, Arctic oscillation (AO), El Niño Southern Oscillation (ENSO), solar activity (SA), volcanic aerosol (VA), and polar stratospheric clouds (PSC) are considered as influencing factors. An increase in the ozone content is observed in the eastern phase of QBO in the altitude range of 18–30 km (I–II quarter) and in the western phase of QBO within the interval of 13–23 km (IV quarter). In separate layers, significant influences of AO (II–III quarters), SA (I–II quarter), and VA (III–IV quarters) are found. The PSC influence during the year manifests itself first in II quarter in the layer of 13–18 km, and then in IV quarter in the layer of 13–23 km. Possible physical mechanisms underlying the observed correlations are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Arctic oscillation. https://www.cpc.ncep.noaa.gov/products/ precip/CWlink/daily_ao_index/ao.shtml.

  2. Aura MLS. https://mls.jpl.nasa.gov/eos-aura-mls.

  3. Ball, W.T., Alsing, J., Staehelin, J., Davis, S.M., Froidevaux, L., and Peter, Th., Stratospheric ozone trends for 1985–2018: Sensitivity to recent large variability, Atmos. Chem. Phys., 2019, vol. 19, pp. 12731–12748. https://doi.org/10.5194/acp-19-12731-2019

    Article  Google Scholar 

  4. Benito-Barca, S., Calvo, N., and Abalos, M., Driving mechanisms for the El Niño-Southern Oscillation impact on stratospheric ozone, Atmos. Chem. Phys., 2022, vol. 22, pp. 15729–15745. https://doi.org/10.5194/acp-22-15729-2022

    Article  Google Scholar 

  5. Brühl, C., Lelieveld, J., Tost, H., Höpfner, M., and Glatthor, N., Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC, J. Geophys. Res.: Atmos., 2015, vol. 120, pp. 2103–2118. https://doi.org/10.1002/2014JD022430

    Article  Google Scholar 

  6. Eriksson, P. and Chen, D., Statistical parameters derived from ozonesonde data of importance for passive remote sensing observations of ozone, Int. J. Remote Sens., 2002, vol. 23, no. 22, pp. 4945–4963.

    Article  Google Scholar 

  7. Fioletov, V.E. and Shepherd, T.G., Seasonal persistence of midlatitude total ozone anomalies, Geophys. Res. Lett., 2003, vol. 30, no. 7, p. 1417. https://doi.org/10.1029/2002GL016739

    Article  Google Scholar 

  8. Gruzdev, A.N., Estimate of the effects of Pinatubo eruption in stratospheric O3 and NO2 contents taking into account the variations in the solar activity, Atmos. Oceanic Opt., 2014a, vol. 27, no. 6, pp. 403–411.

    Article  Google Scholar 

  9. Gruzdev, A.N., Estimate of the effect of the 11-year solar activity cycle on the ozone content in the stratosphere, Geomagn. Aeron. (Engl. Transl.), 2014b, vol. 54, no. 5, pp. 633–639.

  10. Gruzdev, A.N. and Bezverkhnii, V.A., Quasi-biennial oscillation in the atmosphere over North America from ozonesonde data, Izv., Atmos. Ocean. Phys. 2005, vol. 41, no. 1, pp. 29–42.

    Google Scholar 

  11. Gruzdev, A.N. and Bezverkhnii, V.A., Quasi-biennial variations in ozone and meteorological parameters over western Europe from ozonesonde data, Izv., Atmos. Ocean. Phys. 2006, vol. 42, no. 3, pp. 203–214.

    Article  Google Scholar 

  12. Ivanov, V.N., Zubachev, D.S., Korshunov, V.A., and Sakhibgareev, D.G., Network lidar AK-3 for sounding the middle atmosphere: structure, measurement methods, and results, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2020, no. 598, pp. 155–187.

  13. Ivanova, N.S., Kuznetsova, I.N., and Sumerova, K.A., Atmospheric ozone anomalies in February–March 2018, Gidrometeorol. Issled. Prognozy, 2018, no. 4, pp. 36–47.

  14. Iza, M., Calvo, N., and Manzini, E., The stratospheric pathway of La Niña, J. Clim., 2016, vol. 29, pp. 8899–8914. https://doi.org/10.1175/JCLI-D-16-0230.1

    Article  Google Scholar 

  15. Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tence, F., Bekki, S., Bourassa, A., Rieger, L., Zawada, D., Jumelet, J., and Godin-Beekmann, S., The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude, Commun. Earth Environ., 2020, vol. 1, no. 22. https://doi.org/10.1038/s43247-020-00022-5

  16. Hudson, D., Statistics. Lectures on Elementary Statistics and Probability, Geneva: CERN, 1963; Moscow: Mir. 1967.

  17. Korshunov, V.A., Lidar observations of stratospheric aerosol in Obninsk from 2012 to 2021: Impact of volcanic eruptions and wildfires, Fundam. Prikl. Klimatol., 2022, vol. 8, no. 3, pp. 31–51. https://doi.org/10.21513/2410-8758-2022-3-31-51

    Article  Google Scholar 

  18. Korshunov, V.A. and Zubachev, D.S., Temporal variations in the vertical distribution of stratospheric ozone over Obninsk from lidar data, Russ. Meteorol. Hydrol., 2018, vol. 43, no. 3, pp. 168–177.

    Article  Google Scholar 

  19. Krivolutsky, A.A., V’yushkova, T.Yu., Cherepanova, L.A., Kukoleva, A.A., Repnev, A.I., and Banin, M.A., The three-dimensional photochemical model CHARM. Incorporation of solar activity, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 1, pp. 59–88.

  20. MEI V2. https://psl.noaa.gov/enso/mei/.

  21. Naik, V., Horowitz, L.W., Schwarzkopf, M.D., and Lin, M., Impact of volcanic aerosols on stratospheric ozone recovery, J. Geophys. Res.: Atmos., 2017, vol. 122, pp. 9515–9528. https://doi.org/10.1002/2016JD025808

    Article  Google Scholar 

  22. Nerushev, A.F., Vozdeistvie intensivnykh atmosfernykh vikhrei na ozonovyi sloi Zemli (Effect of Intense Atmospheric Eddies on the Earth’s Ozone Layer), St. Petersburg: Gidrometeoizdat, 2003.

  23. Nikiforova, M.P., Zvyagintsev, A.M., Vargin, P.N., Ivanova, N.S., Luk’yanov, A.N., Kuznetsova, I.I., Anomalously low total ozone levels over the northern Urals and Siberia in late January 2016, Atmos. Ocean. Opt., 2017, vol. 30, no. 1, pp. 12–19.

    Article  Google Scholar 

  24. Osprey, S.M., Butchart, N., Knight, J.R., Scaife, A.A., Hamilton, K., Anstey, J.A., Schenzinger, V., and Zhang, C., An unexpected disruption of the atmospheric quasibiennial oscillation, Science, 2016, vol. 353, no. 6306, pp. 1414–1427.

    Article  Google Scholar 

  25. Ozone hole size. https://www.cpc.ncep.noaa.gov/products/ stratosphere/polar/polar.shtml.

  26. QBO data. http://www.esrl.noaa.gov/psd/data/correlation/ qbo.data.

  27. Randel, W.J. and Wu, F., A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data, J. Geophys. Res., 2007, vol. 112, p. D06313. https://doi.org/10.1029/2006JD007339

    Article  Google Scholar 

  28. Schallock, J., Bruhl, C., Bingen, C., Hopfner, M., Rieger, L., and Lelieveld, J., Radiative forcing by volcanic eruptions since 1990, calculated with a chemistry–climate model and a new emission inventory based on vertically resolved satellite measurements, Atmos. Chem. Phys.: Discuss., 2021. https://doi.org/10.5194/acp-2021-654

  29. Semeniuk, K., McConnell, J.C., Jin, J.J., Jarosz, J.R., Boone, C.D., and Bernath, P.F., N2O production by high energy auroral electron precipitation, J. Geophys. Res., 2008, vol. 113, p. D16302. https://doi.org/10.1029/2007JD009690

    Article  Google Scholar 

  30. Sitnov, S.A., QBO effects manifesting in ozone, temperature, and wind profiles, Ann. Geophys., 2004, vol. 22, pp. 1–18.

    Article  Google Scholar 

  31. Solar radio flux. https://spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-en.php.

  32. Solomon, S., Dube, K., Stone, K., Yu, P., Kinnison, D., Toon, O.B., Strahan, S.E., Rosenlof, K.H., Portmann, R., Davis, S., Randeld, W., Bernath, P., Boone, C., Bardeen, C.G., Bourassa, A., et al., On the stratospheric chemistry of midlatitude wildfire smoke, Proc. Natl. Acad. Sci. U. S. A., 2022, vol. 119, no. 10, e2117325119. https://doi.org/10.1073/pnas.2117325119

    Article  Google Scholar 

  33. SO2 emissions. https://so2.gsfc.nasa.gov/measures.html.

  34. Tsvetkova, N.D., Vargin, P.N., Lukyanov, A.N., Kiryushov, B.M., Yushkov, V.A., and Khattatov, V.U., Studying chemical ozone depletion and dynamic processes in the Arctic stratosphere in the winter 2019/2020, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 9, pp. 606–615.

    Article  Google Scholar 

  35. Zvyagintsev, A.M., Vargin, P.N., and Peshin, S., Total ozone variations and trends during the period 1979–2014, Atmos. Oceanic Opt., 2015, vol. 28, no. 9, pp. 575–584.

    Article  Google Scholar 

Download references

Funding

This work was supported by Roshydromet, topic 2.9 “Development of Technology for Monitoring Ozone, Water Vapor and Aerosol in the Middle Atmosphere over the Territory of the Russian Federation.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Korshunov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunov, V.A. Stratospheric Ozone Content Variations Over the City of Obninsk from Data of Lidar and Satellite Measurements. Izv. Atmos. Ocean. Phys. 59, 513–521 (2023). https://doi.org/10.1134/S0001433823050079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823050079

Keywords:

Navigation