Skip to main content
Log in

On the Mechanism of Sulfur Dioxide Oxidation in Cloud Drops

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Data from field experiments on the dynamics of SO2 oxidation in cloud droplets are presented. The rapid experimentally observed oxidation of SO2 by molecular oxygen is attributed here to the catalytic action of a pair of manganese and iron ions in droplets. Their effect, inhomogeneous in the drop-size distribution and attributed in experiments only to the leaching of ions of these metals from coarse particles of mineral aerosol, is also caused by the transition of the oxidation reaction into the branching mode. The results indicate that the branched regime of catalytic oxidation of SO2 detected in cloud droplets should be considered a new and significant source of sulfates in the atmosphere. This process must be taken into account when considering both the budget of sulfates in the global atmosphere and their impact on the climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Alexander, B., Park, R.J., Jacob, D.J., et al., Transition metal-catalyzed oxidation of atmospheric sulfur: global implications for the sulfur budget, J. Geophys. Res.: Atmos., 2009, vol. 114, p. D02309.

    Google Scholar 

  2. Andreae, M.O., Jones, C.D., and Cox, P.M., Strong present-day cooling implies a hot future, Nature, 2005, vol. 435, no. 7046, pp. 1187–1190.

    Article  Google Scholar 

  3. Angle, K.J., Neal, E.E., and Grassian, V.H., Enhanced rates of transition-metal-ion-catalyzed oxidation of S(IV) in aqueous aerosols: Insights into sulfate aerosol formation in the atmosphere, Environ. Sci. Technol., 2021, vol. 55, no. 15, pp. 10291–10299.

    Article  Google Scholar 

  4. Barrie, L.A. and Georgii, H.W., An experimental investigation of the absorption of sulphur dioxide by water drops containing heavy metal ions, Atmos. Environ., 1976, vol. 10, no. 9, pp. 743–749.

    Article  Google Scholar 

  5. Behra, P. and Sigg, L., Evidence for redox cycling of iron in atmospheric water droplets, Nature, 1990, vol. 344, no. 6265, pp. 419–421.

    Article  Google Scholar 

  6. Berdnikov, V.M. and Bazhin, N.M., Redox potentials of some inorganic radicals in aqueous solutions, Zh. Fiz. Khim., 1970, vol. 44, pp. 712–716.

    Google Scholar 

  7. Berglen, T., Berntsen, T., Isaksen, I., and Sundet, J., A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle, J. Geophys. Res., 2004, vol. 109, no. 19, p. D19310.

    Google Scholar 

  8. Berglund, J., Fronaeus, S., and Elding, L.I., Kinetics and mechanism for manganese-catalyzed oxidation of sulfur (IV) by oxygen in aqueous solution, Inorg. Chem., 1993, vol. 32, no. 21, pp. 4527–4537.

    Article  Google Scholar 

  9. Betterton, E.A. and Hoffman, M.R., Oxidation of aqueous SO2 by peroxomonosulfate, J. Phys. Chem., 1988, vol. 92, no. 21, pp. 5962–5965.

    Article  Google Scholar 

  10. Brandt, Ch. and Elding, L.I., Role of chromium and vanadium in the atmospheric oxidation of sulfur(IV), Atmos. Environ., 1998, vol. 32, no. 4, pp. 797–800.

    Article  Google Scholar 

  11. Cheng, Y.F., Zheng, G., Way, Ch., and Mu, Q., Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Sci. Adv., 2016, vol. 2, no. 12, p. e1601530.

    Article  Google Scholar 

  12. Coughanowr, D.R. and Krause, F.E., The reaction of SO2 and O2 in aqueous solutions of MnSO4, Ind. Eng. Chem. Fund, 1965, vol. 4, no. 1, pp. 61–66.

  13. Eremina, I.D., Aloyan, A.E., Arutyunyan, V.O., Larin, I.K., Chubarova, N.E., and Ermakov, A.N., Hydrocarbonates in atmospheric precipitation of Moscow: Monitoring data and analysis, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 3, pp. 334–342.

    Article  Google Scholar 

  14. Feichter, J., Kjellstrom, E., Rodhe, H., et al., Simulation of the tropospheric sulfur cycle in a global climate model, Atmos. Environ., 1996, vol. 30, nos. 10–11, pp. 1693–1707.

    Article  Google Scholar 

  15. Fomba, K.W., Muller, K., van Pinxteren, D., and Herrmann, H., Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: Case study Cape Verde Islands, Atmos. Chem. Phys. Discuss., 2013, vol. 13, no. 9, pp. 4801–4814.

    Article  Google Scholar 

  16. Grell, G.A., Peckham, S., Schmitz, R., et al., Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 2005, vol. 39, no. 37, pp. 6957–6975.

    Article  Google Scholar 

  17. Grgić, I., Hudnik, V., Bizjak, M., and Levec, J., Aqueous S(IV) oxidation. I. Catalytic effects of some metal ions, Atmos. Environ., 1991, vol. 25A, no. 8, pp. 1591–1597.

    Article  Google Scholar 

  18. Gröner, E. and Hoppe, P., Automated ion imaging with the nanoSIMS ion microprobe, Appl. Surf. Sci., 2006, vol. 252, no. 19, pp. 7148–7151.

    Article  Google Scholar 

  19. Harris, E., Sinha, B., Hoppe, P., et al., Sulfur isotope fractionation during oxidation of sulfur dioxide: Gas-phase oxidation by oh radicals and aqueous oxidation by H2O2, O3 and iron catalysis, Atmos. Chem. Phys., 2012a, vol. 12, no. 1, pp. 407–423.

    Article  Google Scholar 

  20. Harris, E., Sinha, B., Foley, S., et al., Sulfur isotope fractionation during heterogeneous oxidation of SO2 on mineral dust, Atmos. Chem. Phys., 2012b, vol. 12, pp. 4867–4884.

    Article  Google Scholar 

  21. Harris, E., Sinha, B., van Pinxteren, D., et al., Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2, Science, 2013, vol. 340, no. 6133, pp. 727–730.

    Article  Google Scholar 

  22. Herrmann, H., Ervens, B., Jacobi, H.-W., et al., Capram2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem., 2000, vol. 36, pp. 231–284.

    Article  Google Scholar 

  23. Hung, H.-M., Hsu, M.-N., and Hoffmann, M.R., Quantification of SO2 oxidation on interfacial surfaces of acidic micro-droplets: Implication for ambient sulfate formation, Environ. Sci. Technol., 2018, vol. 52, no. 16, pp. 9079–9086.

    Article  Google Scholar 

  24. Ibusuki, T. and Takeuchi, K., Sulfur dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) in aqueous solutions at environmental reaction conditions, Atmos. Environ., 1987, vol. 21, no. 7, pp. 1555–1560.

    Article  Google Scholar 

  25. Kaplan, D., Himmelblau, D.M., and Kanaoka, C., Oxidation of sulfur dioxide in aqueous ammonium sulfate aerosols containing manganese as a catalyst, Atmos. Environ., 1981, vol. 15, no. 5, pp. 763–773.

    Article  Google Scholar 

  26. Kulmala, M., Pirjola, U., and Mäkelä, U., Stable sulphate clusters as a source of new atmospheric particles, Nature, 2000, vol. 404, no. 6773, pp. 66–69.

    Article  Google Scholar 

  27. Laj, P., Fuzzi, S., Facchini, M.C., et al., Cloud processing of soluble gases, Atmos. Environ., 1997, vol. 31, no. 16, pp. 2589–2598.

    Article  Google Scholar 

  28. Lee, J.K., Samanta, D., Nam, H.G., and Zare, R.N., Micrometer-sized water droplets induce spontaneous reduction, J. Am. Chem. Soc., 2019, vol. 141, no. 27, pp. 10585–10589.

    Article  Google Scholar 

  29. Liu, P., Ye, C., Xue, Ch, Zhang, Ch., Mu, Yu., and Sun, X., Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas-phase, heterogeneous and aqueous-phase chemistry, Atmos. Chem. Phys., 2020, vol. 20, no. 7, pp. 4153–4165.

    Article  Google Scholar 

  30. Liu, T., Clegg, S.L., and Abbatt, J.P.D., Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles, Proc. Natl. Acad. Sci. U. S. A., 2020, vol. 117, no. 3, pp. 1354–1359.

    Article  Google Scholar 

  31. Martin, L.R. and Good, T.W., Catalyzed oxidation of sulfur dioxide in solution: the iron-manganese synergism, Atmos. Environ., 1991, vol. 25A, no. 10, pp. 2395–2399.

    Article  Google Scholar 

  32. Mauldin, R.L., Madronich, S., Flocke, S.J., et al., New insights on OH: Measurements around and in clouds, Geophys. Res. Lett., 1997, vol. 24, no. 23, pp. 3033–3036.

    Article  Google Scholar 

  33. McCabe, J.R., Savarino, J., Alexander, B., et al., Isotopic constraints on non-photochemical sulfate production in the arctic winter, Geophys. Res. Lett., 2006, vol. 33, no. 5, p. L05810.

    Article  Google Scholar 

  34. Pozzoli, L., Bey, I., Rast, S., Schultz, M.G., Stier, P., and Feichter, J., Trace gas and aerosol interactions in the fully coupled model of aerosol–chemistry–climate ECHAM5-HAMMOZ: 1. Model description and insights from the spring 2001 TRACE-P experiment, J. Geophys. Res., 2008, vol. 113, p. D07308.

    Article  Google Scholar 

  35. Sedlak, D.L., Hoigne, J., David, M.M., et al., The cloudwater chemistry of iron and copper at Great Dun Fell, U.K., Atmos. Environ., 1997, vol. 31, no. 16, pp. 2515–2526.

    Article  Google Scholar 

  36. Seinfeld, J.H. and Pandis, S.N., Atmospheric Chemistry and Physics, from Air Pollution to Climate Change, Hoboken, N.J.: John Wiley and Sons, 2016.

    Google Scholar 

  37. Tilgner, A., Bräuer, P., Wolke, R., and Herrmann, H., Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i, J. Atmos. Chem., 2013, vol. 70, no. 3, pp. 221–256.

    Article  Google Scholar 

  38. van Eldik, R., Coichev, N., Reddy, K.B., and Gerhard, A., Metal ion catalyzed autoxidation of sulfur(IV) oxides: Redox cycling of metal ions induced by sulfite, Ber. Bunsen-Ges. Phys. Chem., 1992, vol. 96, no. 3, pp. 478–481.

    Article  Google Scholar 

  39. Wang, G.H., Zhang, R.Y., Gomes, M.E., et al., Persistent sulfate formation from London fog to Chinese haze, Proc. Natl. Acad. Sci. USA, 2016, vol. 113, no. 48, pp. 13630–13635.

    Article  Google Scholar 

  40. Warneck, P., Mirabel, P., Salmon, G.A., et al., Review of the activities and achievements of the EUROTRAC subproject HALIPP, in Heterogeneous and Liquid Phase Processes, Warneck, P., Ed., Berlin: Springer, 1996, p. 7.

    Book  Google Scholar 

  41. Winterholler, B., Hoppe, P., Foley, S., and Andreae, M.O., Sulfur isotope ratio measurements of individual sulfate particles by NanoSIMS, Int. J. Mass Spectrom., 2008, vol. 272, no. 1, pp. 63–77.

    Article  Google Scholar 

  42. Xie, Y.Z., Liu, Z.R., Wen, T.X., et al., Characteristics of chemical composition and seasonal variations of PM2.5 in Shijiazhuang, China: Impact of primary emissions and secondary formation, Sci. Total Environ., 2019, vol. 677, pp. 215–229.

    Article  Google Scholar 

  43. Yermakov, A.N., On the influence of ionic strength on the kinetics of sulfite oxidation in the presence of Mn(II), Kinet. Catal., 2022, vol. 63, no. 2, pp. 157–165.

    Article  Google Scholar 

  44. Yermakov, A.N. and Purmal, A.P., Catalysis of oxidation HSO3 -/SO3 2- by manganese ions, Kinet. Catal., 2002, vol. 43, no. 2, pp. 249–260.

    Article  Google Scholar 

  45. Yermakov, A.N., Aloyan, A.E., and Arutyunyan, V.O., Dynamics of sulfate origination in atmospheric haze, Opt. Atmos. Okeana, 2023, vol. 36, no. 2, pp. 148–153.

    Google Scholar 

  46. Zhang, H., Xu, Y., and Jia, L., A chamber study of catalytic oxidation of SO2 by Mn2+/Fe3+ in aerosol water, Atmos. Environ., 2021, vol. 245, p. 118019.

    Article  Google Scholar 

  47. Zheng, G.J., Duan, F.K., Su, H., et al., Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions, Atmos. Chem. Phys., 2015, vol. 15, no. 6, pp. 2969–2983.

    Article  Google Scholar 

Download references

Funding

This work was performed with funds from a state assignment for the Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, theme 122040400095-79.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Yermakov or G. B. Pronchev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermakov, A.N., Aloyan, A.E., Arutyunyan, V.O. et al. On the Mechanism of Sulfur Dioxide Oxidation in Cloud Drops. Izv. Atmos. Ocean. Phys. 59, 538–547 (2023). https://doi.org/10.1134/S0001433823050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823050055

Keywords:

Navigation