Skip to main content
Log in

Variations in Surface Concentrations and Total Column of CO2 and CH4 in the Central Part of the European Territory of Russia

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of measurements of surface concentrations and the total column of atmospheric carbon dioxide and methane at Obninsk station by IR spectroscopy are presented. The description of the MR32/MGC equipment for monitoring the gaseous composition of the atmosphere is given. Interannual and seasonal variations and trends in surface concentrations of CO2 and CH4 for 1998–2021 and the total column for 2015–2021 are analyzed. According to the results of cross-correlation wavelet analysis, the phase of annual variations in the column-averaged CH4 concentrations is ahead of the phase of surface variations by 2–3 months, and the variations in column-averaged CO2 concentrations lag behind the phase of annual variations in surface values by 1–2 months. The minimum surface concentrations of methane in May–August coincide with the column-averaged concentrations, and for carbon dioxide in the same period they are 20–30 ppm lower. In winter months, the minimum surface concentrations of methane and carbon dioxide are consequently higher than column-averaged values by 70–150 ppb and 6–15 ppm. The measurement results are compared with the Greenhouse gases Observing SATellite (GOSAT) and data from European ground stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. V. N. Aref’ev, V. I. Dianov-Klokov, and I. P. Malkov, “Field spectral complex for analyzing the content of gaseous pollutants in the atmosphere,” Tr. IEM, No. 8, 73–78 (1978).

    Google Scholar 

  2. V. N. Aref’ev, K. N. Visheratin, F. V. Kashin, and V. P. Ustinov, “Equipment for spectroscopic measurements of the integral content of gases in the atmosphere,” Tr. IEM, No. 25, 119–125 (1995).

    Google Scholar 

  3. V. N. Aref’ev, Yu. I. Baranov, E. L. Baranova, G. I. Bugrim, N. E. Kamenogradskii, and F. V. Kashin, “Variability of the methane content in the atmospheric surface layer and in the atmospheric column,” Izv., Atmos. Ocean. Phys. 40 (3), 356–362 (2004).

    Google Scholar 

  4. V. N. Aref’ev, F. V. Kashin, R. M. Akimenko, Yu. I. Baranov, G. I. Bugrim, K. N. Visheratin, A. V. Kal’sin, N. E. Kamenogradskii, N. I. Sizov, V. P. Ustinov, and L. B. Upenek, “Studies in the field of atmospheric spectroscopy,” in Problems of Hydroecology and Environmental Monitoring: Collection of Scientific Works, Obninsk, 2010, pp. 85–104 [in Russian].

  5. V. N. Aref’ev, N. Ye. Kamenogradsky, F. V. Kashin, and A. V. Shilkin, “Background component of carbon dioxide concentration in the near-surface air,” Izv., Atmos. Ocean. Phys. 50 (6), 576–582 (2014).

    Article  Google Scholar 

  6. V. N. Aref’ev, R. M. Akimenko, F. V. Kashin, and L. B. Upenek, “Background component of methane concentration in surface air (Obninsk monitoring station),” Izv., Atmos. Ocean. Phys. 52 (6), 37–44 (2016).

    Article  Google Scholar 

  7. V. I. Dianov-Klokov and L. N. Yurganov, “Measurements of the integral content of CO, CH4, and N2O in the atmosphere,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 18 (7), 1159–1167 (1982).

    Google Scholar 

  8. D. M. Kabanov and S. M. Sakerin, “Results of studies of the total moisture content of the atmosphere by optical hygrometry. Part 1: Analysis of the methodology and calibration results,” Opt. Atmos. Okeana 8 (6), 852–860 (1995).

    Google Scholar 

  9. K. Ya. Kondrat’ev and V. F. Krapivin, Modeling the Global Carbon Cycle (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  10. M. V. Makarova, O. Kirner, Yu. M. Timofeev, A. V. Poberovskii, Kh. Kh. Imkhasin, S. I. Osipov, and B. K. Makarov, “Annual cycle and long-term trend of the methane total column in the atmosphere over the St. Petersburg region,” Izv., Atmos. Ocean. Phys. 51 (4), 431–438 (2015).

    Article  Google Scholar 

  11. A. V. Mironenkov, A. V. Poberovskii, and Yu. M. Timofeev, “Interpretation of infrared solar spectra for quantification of the column content of atmospheric gases,” Izv., Atmos. Ocean. Phys. 32 (2), 191–198 (1996).

    Google Scholar 

  12. V. S. Rakitin, N. F. Elansky, N. V. Pankratova, A. I. Skorokhod, A. V. Dzhola, Yu. A. Shtabkin, P. Wang, G. Wang, A. V. Vasilieva, M. V. Makarova, and E. I. Grechko, “Study of trends of total CO and CH4 contents over Eurasia through analysis of ground-based and satellite spectroscopic measurements,” Atmos. Oceanic Opt. 30 (6), 517–526 (2017). https://doi.org/10.1134/S1024856017060112

    Article  Google Scholar 

  13. Yu. M. Timofeev, Study of the Earth’s Atmosphere by the Method of Transparency (Nauka, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  14. A. A. Shashkov, A. M. Brounshtein, A. V. Zhukov, V. I. Privalov, and E. V. Faber, “Spectroscopic methods for determining the integral content of CO, N2O, and CH4 in the vertical column of the atmosphere,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 496, 7–23 (1985).

    Google Scholar 

  15. Yu. I. Baranov, E. L. Baranova, G. I. Bougrim, and F. V. Kashin, “Temporal variability of methane, carbon oxide and dioxide and dinitrogen oxide in surface air,” Proc. SPIE 4341, 438–442 (2000).

    Article  Google Scholar 

  16. M. Buschmann, N. M. Deutscher, V. Sherlock, M. Palm, T. Warneke, and J. Notholt, “Retrieval of XCO2 from ground-based mid-infrared (NDACC) solar absorption spectra and comparison to TCCON,” Atmos. Meas. Tech. 9, 577–585 (2016). https://doi.org/10.5194/amt-9-577-2016

    Article  Google Scholar 

  17. H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daub, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3, 375–386 (2010).

    Article  Google Scholar 

  18. E. J. Dlugokencky, E. G. Nisbet, R. Fisher, and D. Lowry, “Global atmospheric methane: Budget, changes and dangers,” Philos. Trans. R. Soc. A 369, 2058–2072 (2011). https://doi.org/10.1098/rsta.2010.0341

    Article  Google Scholar 

  19. E. J. Dlugokencky, J. W. Mund, A. M. Crotwell, M. J. Crotwell, and K. W. Thoning, “Atmospheric carbon dioxide dry air mole fractions from the NOAA GML carbon cycle cooperative global air sampling network, 1968–2020, Version 2021-07-30. https://doi.org/10.15138/wkgj-f215

  20. ESRL, 2021. Earth System Research Laboratory, Global Monitoring Division, Carbon Cycle Greenhouse Gases. http://www.esrl.noaa.gov/.

  21. M. Frey, M. K. Sha, F. Hase, M. Kiel, T. Blumenstock, R. Harig, G. Surawicz, N. M. Deutscher, K. Shiomi, J. E. Franklin, H. Bösch, J. Chen, M. Grutter, H. Ohyama, Y. Sun, et al., “Building the COllaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer,” Atmos. Meas. Tech. 12, 1513–1530 (2019). https://doi.org/10.5194/amt-12-1513-2019

    Article  Google Scholar 

  22. N. M. Gavrilov, M. V. Makarova, A. V. Poberovskii, and Yu. M. Timofeyev, “Comparisons of CH4 ground-based FTIR measurements near Saint Petersburg with GOSAT observations,” Atmos. Meas. Tech. 7, 1003–1010 (2014).

    Article  Google Scholar 

  23. H. Ghasemifard, F. R. Vogel, Y. Yuan, M. Luepke, J. Chen, L. Ries, M. Leuchner, C. Schunk, S. Noreen Vardag, and A. Menzel, “Pollution events at the high-altitude mountain site Zugspitze-Schneefernerhaus (2670 M a.s.l.), Germany,” Atmosphere 10 (6), 330 (2019). https://doi.org/10.3390/atmos10060330

    Article  Google Scholar 

  24. GOSAT, 2021, Greenhouse Gases Observing Satellite. https://data2.gosat.nies.go.jp; https://www.gosat.nies. go.jp/en/about_2_observe.html.

  25. A. Grinsted, J. C. Moore, and S. Jevrejeva, “Application of the cross wavelet transform and wavelet coherence to geophysical time series,” Nonlinear Processes Geophys., No. 11, 561–566 (2004). https://doi.org/10.5194/npg-11-561-2004

  26. F. Hase, T. Blumenstock, S. Dohe, J. Groß, and M. Kiel, TCCON data from Karlsruhe, Germany, Release GGG2014R1, 2017. https://doi.org/10.14291/tccon.ggg2020.karlsruhe01.R0

  27. L. Haszpra, Z. Ferenczi, and Z. Barcza, “Estimation of greenhouse gas emission factors based on observed covariance of CO2, CH4, N2O, and CO mole fractions,” Environ Sci. Eur. 31, 95 (2019). https://doi.org/10.1186/s12302-019-0277-y

    Article  Google Scholar 

  28. R. W. Howarth, “Ideas and perspectives: Is shale gas a major driver of recent increase in global atmospheric methane?,” Biogeosciences 16, 3033–3046 (2019). https://doi.org/10.5194/bg-16-3033-2019

    Article  Google Scholar 

  29. HYSPLIT, 2021, The Hybrid Single-Particle Lagrangian Integrated Trajectory model. https://www.ready.noaa. gov/hypub-bin/trajtype.pl.

  30. Infraspek, 2021. http://www.infraspek.ru/produktsiya/ spektrometryi/fsm-2203-2/; http://www.infraspek.ru/ produktsiya/kyuvetyi/kyuvetyi-gazovyie/.

  31. Global carbon and other biogeochemical cycles and feedbacks, in IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribut9ion of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, et al. (Cambridge Univ. Press, Cambridge, 2021), pp. 673–815.

  32. F. Kashin, “Variations of CO2 mixing ratios in the air near the ground in the European territory of Russia,” J. Environ. Sci. Eng. A 2 (9), 531–536 (2013).

    Google Scholar 

  33. E. Kivimäki, H. Lindqvist, J. Hakkarainen, M. Laine, R. Sussmann, A. Tsuruta, R. Detmers, N. M. Deutscher, E. J. Dlugokencky, F. Hase, O. Hasekamp, R. Kivi, I. Morino, J. Notholt, D. F. Pollard, et al., “Evaluation and analysis of the seasonal cycle and variability of the trend from GOSAT methane retrievals,” Remote Sens. 11 (7), 882 (2019). https://doi.org/10.3390/rs11070882

    Article  Google Scholar 

  34. D. Kubistin, C. Plaß-Dülmer, S. Arnold, M. Lindauer, and J. Müller-Williams, ICOS RI, 2021. ICOS ATC CO Release, Karlsruhe (30.0 m), 2019-01-31–2021-01-31. https://hdl.handle.net/11676/7l7HG_GiOgS_ u3-TEuXB6HkFO.

  35. NOAA, 2021. https://www.noaa.gov/news-release/increase-in-atmospheric-methane-set-another-record-during-2021.

  36. S. C. Olsen and J. T. Randerson, “Differences between surface and column atmospheric CO2 and implications for carbon cycle research,” J. Geophys. Res. 109, D02301 (2004). https://doi.org/10.1029/2003JD003968

    Article  Google Scholar 

  37. S. Oshchepkov, A. Bril, T. Yokota, Y. Yoshida, T. Blumenstock, N. M. Deutscher, S. Dohe, R. Macatangay, I. Morino, J. Notholt, M. Rettinger, C. Petri, M. Schneider, R. Sussman, O. Uchino, et al., “Simultaneous retrieval of atmospheric CO2 and light path modification from space-based spectroscopic observations of greenhouse gases: Methodology and application to GOSAT measurements over TCCON sites,” Appl. Opt. 52, 1339–1350 (2013).

    Article  Google Scholar 

  38. A. Ostler, R. Sussmann, M. Rettinger, N. M. Deutscher, S. Dohe, F. Hase, N. Jones, M. Palm, and B.-M. Sinnhuber, “Multistation Intercomparison of column- averaged methane from NDACC and TCCON: Impact of dynamical variability,” Atmos. Meas. Tech. 7, 4081–4101 (2014). https://doi.org/10.5194/amt-7-4081-2014

    Article  Google Scholar 

  39. V. S. Rakitin, A. I. Skorokhod, N. V. Pankratova, Yu. A. Shtabkin, A. V. Rakitina, G. Wang, A. V. Vasilieva, M. V. Makarova, and P. Wang, “Recent changes of atmospheric composition in background and urban Eurasian regions in XXI century,” IOP Conf. Ser.: Earth Environ. Sci. 606 (1), 012048 (2020). https://doi.org/10.1088/1755-1315/606/1/012048.

  40. L. S. Rothman, I. E. Gordon, I. E. Babikov, A. Barbe, C. D. Benner, et al., “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    Article  Google Scholar 

  41. SFIT4 Version V0.9.4.4, The University Corporation for Atmospheric Research. https://wiki.ucar.edu/display/sfit4.

  42. M. Takeda, H. Nakajima, I. Murata, T. Nagahama, I. Morino, G. C. Toon, R. F. Weiss, J. Mühle, P. B. Krummel, P. J. Fraser, and H.-J. Wang, “First ground-based Fourier transform infrared (FTIR) spectrometer observations of HFC-23 at Rikubetsu, Japan, and Syowa Station, Antarctica,” Atmos. Meas. Tech. 14, 5955–5976 (2021). https://doi.org/10.5194/amt-14-5955-2021

    Article  Google Scholar 

  43. TCCON, 2021. https://tccondata.org/; https://tccon-wiki. caltech.edu/Sites.

  44. Y. Tohjima, M. Kubo, C. Minejima, H. Mukai, H. Tanimoto, A. Ganshin, S. Maksyutov, K. Katsumata, T. Machida, and K. Kita, “Temporal changes in the emissions of CH4 and CO from China estimated from CH4/CO2 and CO/CO2 correlations observed at Hateruma Island,” Atmos. Chem. Phys. 14, 1663–1677 (2014).

    Article  Google Scholar 

  45. K. N. Visheratin, E. L. Baranova, G. I. Bugrim, V. N. Ivanov, E. I. Krasnopeeva, D. G. Sakhibgareev, V. P. Ustinov, A. V. Shilkin, Yu. I. Baranov, and F. V. Kashin, “MR-32/MGS setup for monitoring gas composition of atmosphere,” in XXVII International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics”, (Moscow, 2021). https://symp.iao.ru/files/symp/aoo/ 27/presentation_13663.pdf.

    Google Scholar 

  46. WACCAM, 2013, Whole Atmosphere Community Climate Model. https://www2.acom.ucar.edu/gcm/waccm; ftp://acd.ucar.edu/user/jamesw/IRWG/2013/.

  47. WDCGG, 2021, World Data Centre for Greenhouse Gases. https://gaw.kishou.go.jp.

  48. WMO, 2021, The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020, Greenhouse Gas Bulletin, No. 17, 25 October 2021.

    Google Scholar 

  49. K. W. Wong, D. Fu, T. J. Pongetti, S. Newman, E. A. Kort, R. Duren, Y.-K. Hsu, C. E. Miller, Y. L. Yung, and S. P. Sander, “Mapping CH4: CO2 ratios in Los Angeles with CLARS-FTS from Mount Wilson, California,” Atmos. Chem. Phys. 15, 241–252 (2015). https://doi.org/10.5194/acp-15-241-2015

    Article  Google Scholar 

  50. Y. Yoshida, Y. Ota, N. Eguchi, N. Kikuchi, K. Nobuta, H. Tran, I. Morino, and T. Yokota, “Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite,” Atmos. Meas. Tech. 4, 717–734 (2011). https://doi.org/10.5194/amt-4-717-2011

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank to M.V. Makarova and an anonymous reviewer for a careful analysis of the manuscript, which contributed to improving the structure and content of the work. We are grateful for access to the measurement data in the surface layer and in the atmosphere to the teams of scientists at KIT, Karlsruhe (German Meteorological Service); HUN, Hegihatsal (Hungarian Meteorological Service); TCCON (https://tccon-wiki.caltech.edu/Main/DataUsePolicy); and GOSAT (National Institute for Environmental Studies, Japan), as well as developers of the HYSPLIT model (NOAA’s Air Resources Laboratory).

We also thank V.N. Arefiev for his attention to our work. K.N. Visheratin is grateful to M.V. Makarova (St. Petersburg State University) for consultations on the use and adaptation of the SFIT4 package.

Funding

The processing and analysis of observational data was supported by the Russian Science Foundation, project no. 21-17-00210. The results of measurements of methane and carbon dioxide at Obninsk station are available on the RPA Taifun website.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Visheratin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visheratin, K.N., Baranova, E.L., Bugrim, G.I. et al. Variations in Surface Concentrations and Total Column of CO2 and CH4 in the Central Part of the European Territory of Russia. Izv. Atmos. Ocean. Phys. 59, 174–188 (2023). https://doi.org/10.1134/S0001433823020081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823020081

Keywords:

Navigation