Skip to main content
Log in

Ground-Based FTIR Measurements of Atmospheric Nitric Acid at the NDACC St. Petersburg Site

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Atmospheric nitric acid (HNO3) has a significant impact on the formation of the ozone layer; therefore, its content is regularly monitored using various local and remote-sensing methods. We use ground-based measurements of solar IR spectra with a Bruker 125HR Fourier spectrometer to derive information on the HNO3 content at the NDACC St. Petersburg observational site in Peterhof. The HNO3 time series shows a pronounced seasonal cycle with a maximum in winter and early spring and a minimum in summer and early autumn. The averaged seasonal variations in nitric acid vary from –30 to +60% for the 0–15 km layer, from –25 to +25% for the 15–50 km layer, and from –25 to +30% for total columns. For the 2009–2022 measurement period, no statistically significant trend is found in the time series considered. A comparison of HNO3 stratospheric columns with independent satellite measurements by the MLS and ACE–FTS instruments shows their qualitative and quantitative agreement; the correlation coefficient between ground-based and satellite measurements totals 0.88–0.93. Time series on the vertical structure of the atmospheric nitric acid measured at the St. Petersburg site can be used both to analyze the state of the ozonosphere and to validate satellite measurements and refine the parameters of atmospheric models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Polyakov, D. V. Ionov, O. Kirner, A. V. Poberovskii, and H. Kh. Imkhasin, “Comparing data obtained from ground-based measurements of the total contents of O3, HNO3,HCl, and NO2 and from their numerical simulation,” Izv., Atmos. Ocean. Phys. 52 (1), 57–65 (2016).

    Article  Google Scholar 

  2. Ya. A. Virolainen, A. V. Polyakov, and Yu. M. Timofeyev, “Analysis of the variability of stratospheric gases near St. Petersburg using ground-based spectroscopic measurements,” Izv., Atmos. Ocean. Phys. 57 (2), 148–158 (2021).

    Article  Google Scholar 

  3. Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Poberovskii, and A. V. Polyakov, “Information content of ground-based FTIR method for atmospheric HNO3 vertical structure retrieval,” Opt. Atmos. Okeana 35 (11), 906–911 (2022).

    Article  Google Scholar 

  4. E. Dammers, M. W. Shephard, M. Palm, K. Cady-Pereira, S. Capps, E. Lutsch, K. Strong, J. W. Hannigan, I. Ortega, G. C. Toon, W. Stremme, M. Grutter, N. Jones, D. Smale, J. Siemons, et al., “Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR,” Atmos. Meas. Tech. 10 (7), 2645–2667 (2017).

    Article  Google Scholar 

  5. H. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Hoepfner, N. B. Jones, C. P. Rinsland, and S. W. Wood, “Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements,” J. Quant. Spectrosc. Radiat. Transfer 87 (1), 25–52 (2004).

    Article  Google Scholar 

  6. R. Lindenmaier, K. Strong, R. L. Batchelor, M. P. Chipperfield, W. H. Daffer, J. R. Drummond, T. J. Duck, H. Fast, W. Feng, P. F. Fogal, F. Kolonjari, G. L. Manney, A. Manson, C. Meek, R. L. Mittermeier, et al., “Unusually low Ozone, HCl, and HNO3 column measurements at Eureka, Canada during winter/spring 2011,” Atmos. Chem. Phys. 12 (8), 3821–3835 (2012).

    Article  Google Scholar 

  7. N. J. Livesey, W. G. Read, L. Froidevaux, A. Lambert, G. L. Manney, H. C. Pumphrey, M. L. Santee, M. J. Schwartz, S. Wang, R. E. Cofeld, D. T. Cuddy, R. A. Fuller, RF. Jarnot, J. H. Jiang, B. W. Knosp, et al., Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) Version 3 Level 2 Data Quality and Description Document, Version 3.3x-1.0 (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif., 2011).

    Google Scholar 

  8. N. J. Livesey, W. G. Read, P. A. Wagner, L. Froidevaux, M. L. Santee, M. J. Schwartz, A. Lambert, L. F. Millán Valle, H. C. Pumphrey, G. L. Manney, R. A. Fuller, RF. Jarnot, B. W. Knosp, and R. R. Lay, Version 5.0x Level 2 and 3 Data Quality and Description Document (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif., 2020).

    Google Scholar 

  9. NDACC database. https://www-air.larc.nasa.gov/missions/ ndacc/data.html.

  10. M. Ossohou, C. Galy-Lacaux, V. Yoboué, J. E. Hickman, E. Gardrat, M. Adon, S. Darras, D. Laouali, A. Akpo, M. Ouafo, B. Diop, and C. Opepa, “Trends and seasonal variability of atmospheric NO2 and HNO3 concentrations across three major African biomes inferred from long-term series of ground-based and satellite measurements,” Atmos. Environ. 207, 148–166 (2019).

    Article  Google Scholar 

  11. A. Polyakov, A. Poberovsky, M. Makarova, Y. Virolainen, Y. Timofeyev, and A. Nikulina, “Measurements of CFC-11, CFC-12, and HCFC-22 total columns in the atmosphere at the St. Petersburg site in 2009–2019,” Atmos. Meas. Tech. 14 (8), 5349–5368 (2021).

    Article  Google Scholar 

  12. C. P. Rinsland, R. Zander, and P. Demoulin, “Ground-based infrared measurements of HNO3 total column abundances: Long-term trend and variability,” J. Geophys. Res.: Atmos. 96, 9379–9389 (1991).

    Article  Google Scholar 

  13. S. G. Semakin, A. V. Poberovskii, and Y. M. Timofeev, “Ground-based spectroscopic measurements of the total nitric acid content in the atmosphere,” Izv. Atmos. Ocean. Phys. 49, 294–297 (2013).

    Article  Google Scholar 

  14. C. Shan, H. Zhang, W. Wang, C. Liu, Y. Xie, Q. Hu, and N. Jones, “Retrieval of stratospheric HNO3 and HCl based on ground-based high-resolution Fourier transform spectroscopy,” Remote Sens. 13 (11), 2159 (2021).

    Article  Google Scholar 

  15. P. E. Sheese, K. A. Walker, C. D. Boone, P. F. Bernath, L. Froidevaux, B. Funke, P. Raspollini, and T. von Clarmann, “ACE-FTS ozone, water vapour, nitrous oxide, nitric acid, and carbon monoxide profile comparisons with MIPAS and MLS,” J. Quant. Spectrosc. Radiat. Transfer 186, 63–80 (2017).

    Article  Google Scholar 

  16. Yu. Timofeyev, Ya. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, “Ground-Based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia),” J. Mol. Spectrosc. 323, 2–14 (2016).

    Article  Google Scholar 

  17. C. Vigouroux, M. De Mazière, Q. Errera, S. Chabrillat, E. Mahieu, P. Duchatelet, S. Wood, D. Smale, S. Mikuteit, T. Blumenstock, F. Hase, and N. Jones, “Comparisons between ground-based FTIR and MIPAS N2O and HNO3 profiles before and after assimilation in BASCOE,” Atmos. Chem. Phys. 7 (2), 377–396 (2007).

    Article  Google Scholar 

  18. C. Wespes, D. Hurtmans, C. Clerbaux, M. L. Santee, R. V. Martin, and P. F. Coheur, “Global distributions of nitric acid from IASI/MetOP measurements,” Atmos. Chem. Phys. 9 (20), 7949–7962 (2009).

    Article  Google Scholar 

  19. Whole Atmosphere Community Climate Model (WACCM) Model Output ds313.6. https://doi.org/10.5065/G643-Z138. https://rda-web-prod.ucar.edu/datasets/ds313.6/#!description.

  20. WMO Scientific Assessment of Ozone Depletion: 2018 (World Meteorological Organization, Geneva, Switzerland, 2018), Global Ozone Research and Monitoring Project Rep. No. 58.

  21. M. A. Wolff, T. Kerzenmacher, K. Strong, K. A. Walker, M. Toohey, E. Dupuy, P. F. Bernath, C. D. Boone, S. Brohede, V. Catoire, T. von Clarmann, M. Coffey, W. H. Daffer, M. De Mazière, P. Duchatelet, et al., “Validation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS),” Atmos. Chem. Phys. 8 (13), 3529–3562 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Ground-based spectroscopic measurements were performed using the scientific equipment of the Geomodel resource center at Saint Petersburg State University.

Funding

FTIR measurements of nitric acid in various layers of the atmosphere were obtained with support from the Russian Foundation for Basic Research, grant no. 20-05-00627. Comparisons of ground-based and satellite measurements were made as part of the work of the Studies of the Ozone Layer and Upper Atmosphere laboratory at Saint Petersburg State University, agreement with the Ministry of Education and Science of the Russian Federation no. 075–15-2021-583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Virolainen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virolainen, Y.A., Timofeyev, Y.M., Polyakov, A.V. et al. Ground-Based FTIR Measurements of Atmospheric Nitric Acid at the NDACC St. Petersburg Site. Izv. Atmos. Ocean. Phys. 59, 167–173 (2023). https://doi.org/10.1134/S000143382302007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382302007X

Keywords:

Navigation