Skip to main content
Log in

Comparison of CO2 Content in the Atmosphere of St. Petersburg According to Numerical Modeling and Observations

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Due to the increase in CO2 content in the earth’s atmosphere, which is highly dependent on anthropogenic emissions of CO2, the quality of emission estimation should be improved. Advanced experiment-based methods of the CO2 anthropogenic emission estimation are built on solving an inverse problem using highly accurate measurements of CO2 content and numerical models of transport and chemistry in the atmosphere. The accuracy of such models greatly determines the errors of the emission estimations. In the current study, temporal variations of column-average CO2 content in an atmospheric layer from the surface to a height of ~70–75 km (XCO2) in the Russian metropolis of St. Petersburg from January 2019 to March 2020 simulated by the WRF-Chem model and measured by a Bruker EM27/SUN IR Fourier transform spectrometer are compared. The research has demonstrated that the WRF-Chem model simulates the observed temporal variation of XCO2 in the area of St. Petersburg well (correlation coefficient of ~0.95). However, using CarbonTracker v2022-1 data as chemical boundary conditions, the model overestimates XCO2 relative to the observations significantly during almost the entire period of investigation—systematic difference and standard deviation of the difference are 4.2 and 1.9 ppm (1 and 0.5%). A correction of the chemical boundary conditions which is based on an analysis of a relation between near-surface wind direction and XCO2 variation notably decreases the systematic difference between the modeled and observed data (almost by a factor of 2). The XCO2 variation by the observations and modeling with uncorrected chemical boundary conditions are in a better agreement during vegetation season. This is probably related to the compensation of the systematic difference by inaccuracies in estimated biogenic contribution. Hence, the reason for the still existing mean difference between the modeled and observed data can be inaccuracies in setting chemical boundary conditions for the upper troposphere and in estimating how the biosphere influences CO2 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Alberti, C. Tu, Q., Hase, F., Makarova, M.V., Gribanov, K., Foka, S.C., Zakharov, V., Blumenstock, Th., Buchwitz, M., Diekmann, C., Ertl, B., Frey, M.M., Imhasin, H.Kh., Ionov, D.V., Khosrawi, F., et al., Investigation of spaceborne trace gas products over St. Petersburg and Yekaterinburg, Russia, by using COllaborative Column Carbon Observing Network (COCCON) observations, Atmos. Meas. Tech., 2022, vol. 15, pp. 2199–2229. https://doi.org/10.5194/amt-15-2199-2022

    Article  Google Scholar 

  2. Barthlott, S., Schneider, M., Hase, F., Wiegele, A., Christner, E., González, Y., Blumenstock, T., Dohe, S., Garcia, O.E., Sepúlveda, E., Strong, K., Mendonca, J., Weaver, D., Palm, M., Deutscher, N.M., et al., Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets, Atmos. Meas. Tech., 2015, vol. 8, pp. 1555–1573. https://doi.org/10.5194/amt-8-1555-2015

    Article  Google Scholar 

  3. Beck, V., Koch, T., Kretschmer, R., Marshall, J., Ahmadov, R., Gerbig, C., Pillai, D., and Heimann, M., The WRF greenhouse gas model (WRF-GHG), Tech. Rep. No. 25, Planck Institute for Biogeochemistry, Jena, Germany, 2011.

  4. Bovensmann, H., Buchwitz, M., Burrows, J.P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Heymann, J., Tretner, A., and Erzinger, J., A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications, Atmos. Meas. Tech., 2010, vol. 3, pp. 781–811.

    Article  Google Scholar 

  5. Buchwitz, M., de Beek, R., Burrows, J.P., Bovensmann, H., Warneke, T., Nothol, J., Meirink, J.F., Goede, A.P.H., Bergamaschi, P., Korner, S., Heimann, M., and Schulz, A., Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models, Atmos. Chem. Phys., 2005, vol. 5, pp. 941–962. https://www.atmos-chem-phys.org/acp/5/941.

    Article  Google Scholar 

  6. Callewaert, S., Brioude, J., Langerock, B., Duflot, V., Fonteyn, D., Müller, J.-F., Metzger, J.-M., Hermans, C., Kumps, N., Mahieu, E., and Maziere, M., Analysis of CO2, CH4 and CO surface and column concentrations observed at Reunion Island by assessing WRF-Chem simulations, Atmos. Chem. Phys., 2022, vol. 22, pp. 7763–7792. https://doi.org/10.5194/acp-22-7763-2022

    Article  Google Scholar 

  7. Chevallier, F., Ciais, P., Conway, T.J., et al., CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements, J. Geophys. Res., 2010, vol. 115, D21307. https://doi.org/10.1029/2010JD013887

    Article  Google Scholar 

  8. Committee for Economic Policy and Strategic Planning of St. Petersburg, 2022. https://cedipt.gov.spb.ru/media/ uploads/userfiles/2022/11/11/%D0%A1%D0%9F% D0%A0%D0%90%D0%92%D0%9A%D0%90_%D0% A7%D0%9F_%D1%8F%D0%BD%D0%B2%D0%B0% D1%80%D1%8C-%D1%81%D0%B5%D0%BD%D1% 82%D1%8F%D0%B1%D1%80%D1%8C_2022.pdf.

  9. Frey, M., Hase, F., Blumenstock, T., Groß, J., Kiel, M., Mengistu Tsidu, G., Schäfer, K., Sha, M.K., and Orphal, J., Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions, Atmos. Meas. Tech., 2015, vol. 8, pp. 3047–3057. https://doi.org/10.5194/amt-8-3047-2015

    Article  Google Scholar 

  10. Frey, M., Sha, M.K., Hase, F., Kiel, M., Blumenstock, T., Harig, R., Surawicz, G., Deutscher, N.M., Shiomi, K., Franklin, J.E., Bösch, H., Chen, J., Grutter, M., Ohyama, H., Sun, Y., et al., Building the COllaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer, Atmos. Meas. Tech., 2019, vol. 12, pp. 1513–1530. https://doi.org/10.5194/amt-12-1513-2019

    Article  Google Scholar 

  11. Gisi, M., Hase, F., Dohe, S., Blumenstock, T., Simon, A., and Keens, A., XCO2-measurements with a tabletop FTS using solar absorption spectroscopy, Atmos. Meas. Tech., 2012, vol. 5, pp. 2969–2980. https://doi.org/10.5194/amt-5-2969-2012

    Article  Google Scholar 

  12. Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., and Eder, B., Fully coupled ’online’ chemistry in the WRF model, Atmos. Environ., 2005, vol. 39, pp. 6957–6976.

    Article  Google Scholar 

  13. Hase, F., Frey, M., Blumenstock, T., Groß, J., Kiel, M., Kohlhepp, R., Mengistu Tsidu, C., Schäfer, K., Sha, M.K., and Orphal, J., Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin, Atmos. Meas. Tech., 2015, vol. 8, pp. 3059–3068. https://doi.org/10.5194/amt-8-3059-2015

    Article  Google Scholar 

  14. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N., ERA5 hourly data on single levels from 1959 to present, Copernicus Clim. Change Serv., Climate Data Store (CDS), 2018. https://doi.org/10.24381/cds.adbb2d47. Accessed April 14, 2021.

  15. Hersbach, H., Bell, B., Berrisford, P., et al., The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 2020, vol. 146, pp. 1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  16. Houweling, S., Aben, I., Breon, F.-M., Chevallier, F., Deutscher, N., Engelen, R., Gerbig, C., Griffith, D., Hungershoefer, K., Macatangay, R., Marshall, J., Notholt, J., Peters, W., and Serrar, S., The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements, Atmos. Chem. Phys., 2010, vol. 10, pp. 9981–9992. https://www.atmos-chem-phys.net/10/9981/2010/. https://doi.org/10.5194/acp-10-9981-2010

    Article  Google Scholar 

  17. Ionov, D.V., Makarova, M.V., Hase, F., Foka, S.C., Kostsov, V.S., Alberti, C., Blumenstock, T., Warneke, T., and Virolainen, Ya.A., The CO2 integral emission by the megacity of St Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling, Atmos. Chem. Phys., 2021, vol. 21, no. 14, pp. 10939–10963. https://doi.org/10.5194/acp-21-10939-2021

    Article  Google Scholar 

  18. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte, V., Zhai, P., Pirani, A., et al., Eds., Cambridge: Cambridge University Press, 2021. https://doi.org/10.1017/9781009157896

  19. Jacobson, A.R., Schuldt, K.N., Miller, J.B., Tans, P., Andrews, A., Mund, J., Aalto, T., Bakwin, P., Bergamaschi, P., Biraud, S.C., Chen, H., Colomb, A., Conil, S., Cristofanelli, P., Davis, K., et al., CarbonTracker Near-Real Time, CT-NRT.V2020-1, NOAA Earth System Research Laboratory, Global Monitoring Division, 2020. https://doi.org/10.25925/RCHH-MS75.

  20. Lauvaux, T., Miles, N.L., Richardson, S.J., Deng, A., Stauffer, D.R., Davis, K.J., Jacobson, G., Rella, C., Calonder, G., and DeCola, P.L., Urban emissions of CO2 from Davos, Switzerland: The first real-time monitoring system using an atmospheric inversion technique, J. Appl. Meteorol. Climatol., 2013, vol. 52, no. 12, pp. 2654–2668. https://doi.org/10.1175/JAMC-D-13-038.1

    Article  Google Scholar 

  21. Li, H.D., Claremar, B., Wu, L.C., Hallgren, C., Körnich, H., Ivanell, S., and Sahlée, E.A sensitivity study of the WRF model in offshore wind modeling over the Baltic Sea, Geosci. Front 12, 101229 (2021). https://doi.org/10.1016/j.gsf.2021.101229

    Article  Google Scholar 

  22. Mahadevan, P., Wofsy, S.C., Matross, D.M., Xiao, X., Dunn, A.L., Lin, J.C., Gerbig, C., Munger, J.W., Chow, V.Y., and Gottlieb, E.W., A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM), Global Biogeochem. Cycles, 2008, vol. 22, GB2005. https://doi.org/10.1029/2006GB002735

    Article  Google Scholar 

  23. Makarova, M.V., Alberti, C., Ionov, D.V., Hase, F., Foka, S.C., Blumenstock, T., Warneke, T., Virolainen, Ya.A., Kostsov, V.S., Frey, M., Poberovskii, A.V., Timofeyev, Yu.M., Paramonova, N.N., Volkova, K.A., Zaitsev, N.A., et al., Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign-2019, Atmos. Meas. Tech., 2021, vol. 14, pp. 1047–1073. https://doi.org/10.5194/amt-14-1047-2021

    Article  Google Scholar 

  24. Maksyutov, S., Oda, T., Saito, M., Janardanan, R., Belikov, D., Kaiser, J.W., Zhuravlev, R., Ganshin, A., Valsala, V.K., Andrews, A., Chmura, L., Dlugokencky, E., Haszpra, L., Langenfelds, R.L., Machida, T., et al., Technical Note: A high-resolution inverse modelling technique for estimating surface CO2 fluxes based on the NIES-TM-FLEXPART coupled transport model and its adjoint, Atmos. Chem. Phys., 2021, vol. 21, pp. 1245–1266. https://doi.org/10.5194/acp-21-1245-2021

    Article  Google Scholar 

  25. Martin, C.R., Zeng, N., Karion, A., Mueller, K., Ghosh, S., Lopez-Coto, I., Gurney, K.R., Oda, T., Prasad, R.R., Liu, Y., Dickerson, R.R., and Whetstone, J.R., Investigating sources of variability and error in simulations of carbon dioxide in an urban region, Atmos. Environ., 2019, vol. 199, pp. 55–69.

    Article  Google Scholar 

  26. Miller, S.T.K., Keim, B.D., Talbot, R.W., and Mao, H., Sea breeze: Structure, forecasting, and impacts, Rev. Geophys., 2003, vol. 41, p. 1011. https://doi.org/10.1029/2003RG000124

    Article  Google Scholar 

  27. Mues, A., Lauer, A., Lupascu, A., Rupakheti, M., Kuik, F., and Lawrence, M.G., WRF and WRF-Chem V3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley, Geosci. Model Dev., 2018, vol. 11, pp. 2067–2091. https://doi.org/10.5194/gmd-11-2067-2018

    Article  Google Scholar 

  28. Nerobelov, G.M. and Timofeyev, Y.M., Estimates of CO2 emissions and uptake by the water surface near St. Petersburg megalopolis, Atmos. Ocean Opt., 2021, vol. 34, pp. 422–427. https://doi.org/10.1134/S1024856021050158

    Article  Google Scholar 

  29. Nerobelov, G., Timofeyev, Y., Smyshlyaev, S., Foka, S., Mammarella, I., and Virolainen, Y., Validation of WRF-Chem model and CAMS performance in estimating near-surface atmospheric CO2 mixing ratio in the area of Saint Petersburg (Russia), Atmosphere, 2021, vol. 12, no. 3, p. 387. https://doi.org/10.3390/atmos12030387

    Article  Google Scholar 

  30. Nikitenko, A.A., Nerobelov, G.M., Timofeev, Yu.M., and Poberovskii, A.V., Analysis of ground-based spectroscopic measurements of CO2 in Peterhof, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2021, vol. 18, no. 6, pp. 265–272.

    Article  Google Scholar 

  31. Oda, T., Bun, R., Kinakh, V., Topylko, P., Halushchak, M., Marland, G., Lauvaux, T., Jonas, M., Maksyutov, S., Nahorski, Z., Lesiv, M., Danylo, O., and Horabik-Pyzel, J., Errors and uncertainties in a gridded carbon dioxide emissions inventory, Mitigation Adapt. Strategies Global Change, 2019, vol. 24, pp. 1007–1050. https://doi.org/10.1007/s11027-019-09877-2

    Article  Google Scholar 

  32. Peylin, P., Law, R.M., Gurney, K.R., Chevallier, F., Jacobson, A.R., Maki, T., Niwa, Y., Patra, P.K., Peters, W., Rayner, P.J., Rodenbeck, C., van der Laan-Luijkx, I.T., and Zhang, X., Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions, Biogeosciences, 2013, vol. 10, pp. 6699–6720. https://doi.org/10.5194/bg-10-6699-2013

    Article  Google Scholar 

  33. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Liu, Z., Berner, J., Wang, W., Powers, J.G., Duda, M.G., Barker, D., and Huang, X.-Yu., A description of the Advanced Research WRF Model Version 4.1, NCAR/TN-556+STR. https://doi.org/10.5065/1dfh-6p97

  34. Timofeyev, Yu., Virolainen, Ya., Makarova, M., Poberovsky, A., Polyakov, A., Ionov, D., Osipov, S., and Imhasin, H., Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia), J. Mol. Spectrosc., 2016, vol. 323, pp. 2–14. https://doi.org/10.1016/j.jms.2015.12.007

    Article  Google Scholar 

  35. Timofeyev, Yu.M., Berezin, I.A., Virolainen, Ya.A., Makarova, M.V., Polyakov, A.V., Poberovsky, A.V., Filippov, N.N., and Foka, S.Ch., Spatial–temporal CO2 variations near St. Petersburg based on satellite and ground-based measurements, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 1, pp. 59–64.

    Article  Google Scholar 

  36. Timofeyev, Y.M., Nerobelov, G.M., Virolainen, Y.A., Poberovskii, A.V., and Foka, S.C., Estimates of CO2 anthropogenic emission from the megacity of St. Petersburg, Dokl. Earth Sci., 2020, vol. 494, no. 1. https://doi.org/10.1134/S1028334X20090184

  37. Timofeyev, Y.M., Nerobelov, G.M., and Poberovskii, A.V., Experimental estimates of integral anthropogenic CO2 emissions in the city of St. Petersburg, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 3, pp. 237–245. https://doi.org/10.1134/S0001433822030100

    Article  Google Scholar 

  38. Tomohiro, O. and Maksyutov, S., ODIAC fossil fuel CO2 emissions dataset (Version Name: ODIAC2020b), Center for Global Environmental Research, National Institute for Environmental Studies, 2015. https://doi.org/10.17595/20170411.001.

  39. Vogel, F.R., Frey, M., Staufer, J., Hase, F., Broquet, G., Xueref-Remy, I., Chevallier, F., Ciais, P., Sha, M.K., Chelin, P., Jeseck, P., Janssen, C., Te, Y., Groß, J., Blumenstock, T., et al., XCO2 in an emission hot-spot region: The COCCON Paris campaign 2015, Atmos. Chem. Phys., 2019, vol. 19, pp. 3271–3285. https://doi.org/10.5194/acp-19-3271-2019

    Article  Google Scholar 

  40. Zhao, X., Marshall, J., Hachinger, S., Gerbig, C., Frey, M., Hase, F., and Chen, J., Analysis of total column CO2 and CH4 measurements in Berlin with WRF-GHG, Atmos. Chem. Phys., 2019, vol. 19, pp. 11279–11302. https://doi.org/10.5194/acp-19-11279-2019

    Article  Google Scholar 

  41. Zheng, T., Nassar, R., and Baxter, M., Estimating power plant CO2 emission using OCO-2 XCO2 and high resolution WRF-Chem simulations, Environ. Res. Lett., 2019, vol. 14, 085001.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank our colleagues from the Max Planck Institute for Biogeochemistry (Jena, Germany) for help in running the VPRM model. We thank Frank Hase, Thomas Blumenstock, and Carlos Alberti from the Karlsruhe Institute of Technology (Karlsruhe, Germany) for providing the Bruker EM27/SUN meter and assisting with the total CO2 measurements in Peterhof. We also thank the NOAA ESRL science team for free access to CarbonTracker data.

Funding

This work, Study of the Ozone Layer and Upper Atmosphere laboratory of St. Petersburg State University, was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2021-583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Nerobelov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nerobelov, G.M., Timofeyev, Y.M., Smyshlyaev, S.P. et al. Comparison of CO2 Content in the Atmosphere of St. Petersburg According to Numerical Modeling and Observations. Izv. Atmos. Ocean. Phys. 59, 275–286 (2023). https://doi.org/10.1134/S0001433823020056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823020056

Keywords:

Navigation