Skip to main content
Log in

Shear Flow Instability over a Finite Time Interval

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Within the framework of a discrete quasi-geostrophic model with two vertical levels, the problem of linear stability of the flow of a stratified rotating fluid with constant vertical and horizontal velocity shifts is solved. It is shown that taking into account the horizontal shear leads to a qualitative change in the dynamics of unstable wave disturbances. The main feature is related to the effect of temporary exponential growth of unstable perturbations, i.e., growth over a finite time period. This effect manifests itself in the alternation of stages of smooth oscillating behavior (in time) with stages of the exponential (explosive) growth of finite duration. A kinematic interpretation of the effect of temporal exponential growth is given, which is associated with the passage of a time-dependent perturbation wave vector through the region of exponential instability that exists in the absence of a horizontal shear. It is shown that mathematically this effect is described by solutions of a second-order differential equation containing turning points. Asymptotic solutions of the equation are given for weak horizontal shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. Gill, Atmosphere–Ocean Dynamics (Academic, London, 1982; Mir, Moscow, 1986).

  2. M. V. Kalashnik, “Linear dynamics of Eady waves in the presence of horizontal shear,” Izv., Atmos. Ocean. Phys. 45 (6), 714–722 (2009).

    Article  Google Scholar 

  3. M. V. Kalashnik, M. V. Kurgansky, and O. G. Chkhetiani, “Baroclinic instability in geophysical fluid dynamics,” Phys.-Usp. 65 (10), 1039–1070 (2022). https://doi.org/10.3367/UFNe.2021.08.039046

    Article  Google Scholar 

  4. N. E. Kochin, N. A. Kibel’, and N. V. Roze, Theoretical Fluid Mechanics (Fizmatgiz, Moscow, 1963), Vol. 1 [in Russian].

    Google Scholar 

  5. H. Lamb, Hydrodynamics (Dover, New York, 1945; Gostekhizdat, Leningrad, 1947).

  6. J. Lighthill, Waves in Fluids (Cambridge Univ. Press, 1979; Mir, Moscow, 1981).

  7. P. Le Blond and L. Mysak, Waves in the Ocean (Elsevier, 1977; Mir, Moscow, 1981).

  8. A. S. Monin, Theoretical Foundations of Geophysical Hydrodynamics (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  9. A. Nayfe, Perturbation Methods (Wiley, New York, 1973; Mir, Moscow, 1976).

  10. G. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).

  11. T. E. Faber, Fluid Dynamics for Physicists (Cambridge University Press, 1995; Postmarket, Moscow, 2001).

  12. A. Barcilon and C. H. Bishop, “Nonmodal development of baroclinic waves undergoing horizontal shear deformation,” J. Atmos. Sci. 55 (4), 3583–3597 (1998).

    Article  Google Scholar 

  13. C. H. Bishop, “On the behavior of baroclinic waves undergoing horizontal shear deformation I: The "RT” phase diagram," Q. J. R. Meteorol. Soc. 119, 221–240 (1993).

    Google Scholar 

  14. G. D. Chagelishvili, G. R. Khujadze, J. G. Lominadze, and A. D. Rogava, “Acoustic waves in unbounded shear flows,” Phys. Fluids 9, 1955–1965 (1997).

    Article  Google Scholar 

  15. G. D. Chagelishvili, A. G. Tevzadze, G. Bodo, and S. S. Moiseev, “Linear mechanism of wave emergence from vortices in smooth shear flows,” Phys. Rev. Lett. 79 (17), 3178–3181 (1997).

    Article  Google Scholar 

  16. E. T. Eady, “Long waves and cyclone waves,” Tellus 1 (3), 33–52 (1949).

    Article  Google Scholar 

  17. I. M. Held, R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, “Surface quasi-geostrophic dynamics,” J. Fluid Mech. 282, 1–20 (1995).

    Article  Google Scholar 

  18. M. V. Kalashnik, O. G. Chkhetiani, and M. V. Kurgansky, “Discrete SQG models with two boundaries and baroclinic instability of jet flows,” Phys. Fluids 33, 076608 (2021). https://doi.org/10.1063/5.0056785

    Article  Google Scholar 

  19. M. V. Kalashnik, G. R. Mamatsashvili, G. D. Chagelishvili, and J. G. Lominadze, “Linear dynamics of non-symmetric perturbations in geostrophic flows with a constant horizontal shear,” Q. J. R. Meteorol. Soc. 132 (615), 505–518 (2006).

    Article  Google Scholar 

  20. J. Pedlosky, Geophysical Fluid Dynamics (Springer, Berlin–New York, 1987).

    Book  Google Scholar 

  21. N. A. Phillips, “Energy transformation and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model,” Tellus 6, 273–283 (1954).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 22-27-00039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kalashnik.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashnik, M.V. Shear Flow Instability over a Finite Time Interval. Izv. Atmos. Ocean. Phys. 59, 144–149 (2023). https://doi.org/10.1134/S0001433823020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823020032

Keywords:

Navigation