Skip to main content
Log in

Changes in the Specific Electrical Resistivity of Rocks at Different Depths of the Geoelectric Section and Their Comparison with Seismicity

  • PART 3. THE IMPACT OF EARTHQUAKES, SEISMOTECTONIC AND GEODYNAMIC PROCESSES ON THE ENVIRONMENT
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The authors had previously carried out a unique experiment on the long-term continuous precision monitoring of crustal resistivity variations in a highly seismic region. The measurements were made using precision equipment every day for 12 years on a stationary multielectrode VES array , including 18 spacings. The result of this experiment can be considered a VES profile of a special type, in which, instead of a linear coordinate, the sounding date changes from picket to picket. This profile contains over 4000 pickets. As a result of this profile inversion, long-term time series of resistivity variations at different depths were constructed. To estimate the accuracy of resistivity reconstruction in each layer, a series of numerical experiments was carried out. In the course of these experiments, synthetic time series of resistivity variations in different layers of the section were first constructed, simulating real resistivity variations. Then the direct VES problem was solved for them, and time series of apparent resistivity were constructed. Pseudorandom noise with properties similar to real noise was added to these series. After that, the inverse VES problem was solved and the accuracy of restoring the original synthetic resistivity series was estimated. In the present work, the experimental series of time variations of resistivity in four layers of the geoelectric section, obtained in this experiment, are analyzed. These series, lasting about 10 years, have been reconstructed with an accuracy unprecedented for field soundings. The decomposition of resistivity series into seasonal and residual (flicker-noise (FN)) components has been carried out, and their statistical characteristics have been evaluated. The dependence of the amplitude of seasonal effects on the depth of the layer has been studied. The power-law parameter of the spectra for the FN components is calculated, and its systematic decrease is found as the spacing AB for apparent resistivities and depth for resistivity increases. The possibility of changing the resistivity under the influence of nearby shallow seismic events, as well as the processes of their nucleation, is discussed. Earthquakes are considered whose sources were located in the immediate vicinity of the probed volume or even partially captured it (the ratio of the linear size of the source to the epicentral distance is at least 0.5). The presence of resistivity variations in the lower layers of the geoelectric section, which are synchronous with seismic events, has been demonstrated, but their significance needs further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Abdullabekov, K.N., Elektromagnitnye yavleniya v zemnoi kore (Electromagnetic Phenomena in the Earth’s Crust), Tashkent: FAN, 1989.

  2. Asada, T., Takagi, A., Isibasi, K., Suyehiro, S., Usami, T., Matsuda, T., Iosii, T., Wakita, H., Sato, H., and Mizutani, H., Earthquake Prediction Techniques (Their Application in Japan), Tokyo: Tokyo University Press, 1982; Moscow: Nedra, 1984.

  3. Avagimov, A.A., Ataev, A.K., Santuryan, V.A., and Efendiev, M.I., Elektromagnitnyi monitoring na geodinamicheskikh poligonakh (Electromagnetic Monitoring at Geodynamic Polygons), Ashkhabad: Ylym, 1993.

  4. Bataleva, E.A. and Mukhamadeeva, V.A., Complex electromagnetic monitoring of geodynamic processes in the northern Tien Shan (Bishkek geodynamic test area), Geodin. Tektonofiz., 2018, vol. 9, no. 2, pp. 461–487. https://doi.org/10.5800/GT-2018-9-2-0356

    Article  Google Scholar 

  5. Berdyev, A.A. and Mukhamedov, V.A., Earthquakes: A flicker-noise?, Dokl. Akad. Nauk SSSR, 1987, vol. 297, no. 5, pp. 1077–1082.

    Google Scholar 

  6. Bobachev, A.A., IPI-1D: A system for one-dimensional profile interpretation of induced polarization and vertical electrical sounding data. http://geoelectric.ru/ ipi2win.htm. Accessed June 26, 2020.

  7. Bobachev, A.A., Deshcherevskii, A.V., and Sidorin, A.Ya., Features of instability in solving the inverse problem of vertical electrical sounding for precision monitoring, Seism. Instrum., 2021a. T. 99, no. 1, pp. 31–58. https://doi.org/10.3103/S0747923921030038

  8. Bobachev, A.A., Deshcherevskii, A.V., and Sidorin, A.Ya., Regularization algorithms for increasing the stability of the solution to the inverse problem in precision monitoring of electrical resistivity using the VES method, Seism. Instrum., 2021b, vol. 57, no. 3, pp. 409–423. https://doi.org/10.3103/S0747923921040022

    Article  Google Scholar 

  9. Bobachev, A.A., Deshcherevskii, A.V., and Sidorin, A.Ya., Regularization of the solution of the inverse VES problem by the contrast stabilization method: Testing the algorithm on model data, Seism. Instrum., 2022a, vol. 58, no. 5, pp. 581–600. https://doi.org/10.3103/S074792392205005X

    Article  Google Scholar 

  10. Bobachev, A.A., Deshcherevskii, A.V., and Sidorin, A.Ya., Estimating the error of the solution of the inverse VES problem for precision studies of temporal variations in the geoelectric section with a strong seasonal effect, Seism. Prib, 2022b, vol. 58, Suppl. 2, pp. S221–S235. https://doi.org/10.3103/S0747923922080059

    Article  Google Scholar 

  11. Bobachev, A.A., Deshcherevskii, A.V., and Sidorin, A.Ya., Precision solution of the VES inverse problem for experimental datс of long-term monitoring of the Earth’s crust, Seismic Instruments, 2022, vol. 58, Suppl. 2, pp. S386–S411. https://doi.org/10.3103/S0747923922080175

    Article  Google Scholar 

  12. Deshcherevskii, A.V., Filtration of the seasonal components of the variations in geoelectric parameters in the Garm polygon, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Moscow: Inst. Dyn. Geos., Russ. Acad. Sci., 1996.

  13. Deshcherevskii, A.V., Fraktal’naya razmernost’, pokazatel’ Khersta i ugol naklona spektra vremennogo ryada (Fractal Dimension, Hurst’s Index, and Inclination Angle of the Time Series Spectrum), Moscow: OIFZ RAN, 1997.

  14. Deshcherevskii, A.V., Correlation between time series: What could be easier? https://habr.com/ru/post/ 542638/. Accessed November 05, 2022.

  15. Deshcherevskii, A.V. and Lukk, A.A., Separation of regular components in temporal variations of geophysical parameters by the method of expansion into nonharmonic components, Vulkanol. Seismol., 2002, no. 5, pp. 65–78.

  16. Deshcherevskii, A.V. and Sidorin, A.Ya., Experimental investigations of the apparent resistivity seasonal variations in the context of seismology problems, Seism. Prib., 1999a, no. 32, pp. 62–75.

  17. Deshcherevskii, A.V. and Sidorin, A.Ya., Nekotorye voprosy metodiki otsenki srednesezonnykh funktsii dlya geofizicheskikh dannykh (Some Problems of the Method for Estimating the Average Seasonal Functions for Geophysical Data), Moscow: OIFZ RAN,1999b.

  18. Deshcherevskii, A.V. and Sidorin, A.Ya., Hidden periodic components and flicker noise in the electrotelluric field, Izv., Phys. Solid Earth., 1999c, vol. 35, no. 4, pp. 306–317.

    Google Scholar 

  19. Deshcherevskii, A.V. and Sidorin, A.Ya., A two component model of geophysical processes: Seasonal variations and flicker noise, Dokl. Earth Sci., 2001, vol. 376, no. 1, pp. 65–70.

    Google Scholar 

  20. Deshcherevskii, A.V. and Sidorin, A.Ya., A flicker-noise problem in the study of cause-and-effect relationships between natural processes, Dokl. Earth Sci., 2003a, vol. 392, no. 7, no. 1030–1034.

  21. Deshcherevskii, A.V. and Sidorin, A.Ya., Anomalous dependence of the seasonal variation amplitude of apparent electric resistivity on the spacing, Dokl. Earth Sci., 2003b, vol. 388, no. 1, pp. 110–113.

    Google Scholar 

  22. Deshcherevskii, A.V. and Sidorin, A.Ya., Seasonal variations of the apparent resistivity as a function of the sounding depth, Izv., Phys. Solid Earth, 2004a, vol. 40, no. 3, pp. 177–193.

    Google Scholar 

  23. Deshcherevskii, A.V. and Sidorin, A.Ya., On the significance of correlation between fish electric activity and the electrotelluric field, Biophysics, 2004b, vol. 49, no. 4, pp. 658–666.

    Google Scholar 

  24. Deshcherevskii, A.V. and Sidorin, A.Ya., Optimization of the algorithm for calculating the electrical resistivity of temporal variations using VES monitoring data to increase the accuracy and reliability of the results, Seism. Instrum., 2020, vol. 56, no. 5, pp. 540–554. https://doi.org/10.3103/S0747923920050072

    Article  Google Scholar 

  25. Deshcherevskii, A.V. and Sidorin, A.Ya., Iterative algorithm for time series decomposition into trend and seasonality: Testing using the example of CO2 concentrations in the atmosphere, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 8, pp. 813–836. https://doi.org/10.1134/S0001433821080028

    Article  Google Scholar 

  26. Deshcherevskii, A.V. and Sidorin, A.Ya., An algorithm for adaptive assessment in time series seasonal oscillations and its testing based on the example of variations in the CO2 concentration in the atmosphere, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 7, pp. 629–655. https://doi.org/10.1134/S0001433822070027

    Article  Google Scholar 

  27. Deshcherevskii, A.V. and Zhuravlev, V.I., Testirovanie metodiki otsenki parametrov flikker-shuma (Testing the Technique for Flicker-Noise Parameter Estimation), Moscow: OIFZ RAN, 1996.

  28. Deshcherevskii, A.V., Zhuravlev, V.I., Lukk, A.A., and Sidorin, A.Ya., Signs of flicker-noise structure in temporal realizations of electrometric parameters, in Izuchenie prirody variatsii geofizicheskikh polei (Study of the Nature of Variations in Geophysical Fields), Moscow: OIFZ RAN, 1994, pp. 5–17.

  29. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Linearity of spectra of nonseasonal components of geophysical time series, Dokl. Earth Sci., 1996, vol. 347, no. 2, pp. 302–305.

    Google Scholar 

  30. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Spectral–temporal features of seasonal variations in apparent resistivity, Izv., Phys. Solid Earth, 1997a, vol. 33, no. 3, pp. 217–226.

    Google Scholar 

  31. Deshcherevskii, A.V., Lukk, A.A., and Sidorin, A.Ya., Flicker noise structure in the time realizations of geophysical fields, Izv., Phys. Solid Earth, 1997b, vol. 33, no. 7, pp. 515–529.

    Google Scholar 

  32. Deshcherevskii, A.V., Lukk, A.A., and Sidorin, A.Ya., Investigations at the Garm test area and their impact on the evolution of notions on the earthquake prediction, in Ocherki geofizicheskikh issledovanii. K 75-letiyu Ob’’edinennogo instituta fiziki Zemli im. O. Yu. Shmidta (Sketches on Geophysical Studies: Toward the 75-Year Anniversary of the O.Yu. Shmidt Joint Institute of Physics of the Solid Earth), Gliko, A.O., Ed., Moscow: OFIZ RAN, 2003a, pp. 111–129.

  33. Deshcherevskii, A.V., Lukk, A.A., and Sidorin, A.Ya., A new paradigm of earthquake prediction, Dokl. Earth Sci., 2003b, vol. 388, no. 1, pp. 68–71.

    Google Scholar 

  34. Deshcherevskii, A.V., Lukk, A.A., and Sidorin, A.Ya., Fluctuations of geophysical fields and earthquake prediction, Izv., Phys. Solid Earth, 2003c, vol. 39, no. 4, pp. 267–282.

    Google Scholar 

  35. Deshcherevskii, A.V., Lukk, A.A., Sidorin, A.Y., Vstovsky, G.V., and Timashev, S.F., Flicker-noise spectroscopy in earthquake prediction research, Nat. Hazards Earth Syst. Sci., 2003d, vol. 3, nos. 3–4, pp. 159–164. https://doi.org/10.5194/nhess-3-159-2003

    Article  Google Scholar 

  36. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technology for analyzing geophysical time series: Part 2. WinABD—A software package for maintaining and analyzing geophysical monitoring data, Seism. Instrum., 2017a, vol. 53, no. 3, pp. 203–223.https://doi.org/10.3103/S0747923917030021

    Article  Google Scholar 

  37. Desherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Problems in analyzing time series with gaps and their solution with the WinABD software package, Izv. Atmos. Oceanic Phys., 2017b, vol. 53, pp. 659–678.https://doi.org/10.1134/S0001433817070027

  38. Deshcherevskii, A.V., Modin, I.N., and Sidorin, A.Ya., Constructing the optimal model of the geoelectric section using vertical electrical sounding data: Case study of the central part of the Garm research area, Izv., Atmos. Ocean. Phys., 2018a, vol. 54, no. 10, pp. 1490–1511. https://doi.org/10.1134/S0001433818100031

    Article  Google Scholar 

  39. Deshcherevskii, A.V., Modin, I.N., and Sidorin, A.Ya., Method for constructing a model of a geoelectric section taking into account seasonal variations based on data from long-term vertical electric sounding monitoring in search of earthquake precursors, Seism. Instrum., 2018b, vol. 54, no. 4, pp. 424–436. https://doi.org/10.3103/S0747923918040023

    Article  Google Scholar 

  40. Deshcherevskii, A.V., Modin, I.N., and Sidorin, A.Ya., Seasonal variations in specific resistivity in the upper layers of the Earth crust, Seism. Instrum., 2019, vol. 55, no. 3, pp. 300–312. https://doi.org/10.3103/S0747923919030058

    Article  Google Scholar 

  41. Deshcherevskii, A.V., Idarmachev, Sh.G., and Idarmachev, I.Sh., Influence of seasonal water level change in the Chirkei reservoir on the apparent resistivity of rocks of the Khadum dome located in its vicinity, Geol. Geofiz. Yuga Ross., 2020, vol. 10, no. 4, pp. 101–112. https://doi.org/10.46698/VNC.2020.69.97.006

    Article  Google Scholar 

  42. Gavrilov, V.A., Lander, A.V., and Morozova, Yu.V., Comparison of borehole geoacoustic and electromagnetic data with data of earthquake focal mechanisms, Dokl. Earth Sci., 2019, vol. 484, no. 2, pp. 217–221. https://doi.org/10.1134/S1028334X19020193

    Article  Google Scholar 

  43. Geilikman, M.B. and Pisarenko, V.F., On the self-similarity in geophysical phenomena, in Diskretnye svoistva geofizicheskoi sredy (Discrete Properties of the Geophysical Environment), Moscow: Nauka, 1989, pp. 109–131.

  44. Geller, R.J., Jackson, D.D., Kagan, Y.Y., and Mulargia, F., Earthquakes cannot be predicted, Science, 1997, vol. 275, no. 5306, pp. 1616–1617. https://doi.org/10.1126/science.275.5306.1616

    Article  Google Scholar 

  45. Gravirov, V.V., Deshcherevskii, A.V., Kuz’min, Yu.O., Likhodeev, D.V., Sobisevich, A.L., and Shirokov, I.A., Improvements in high-precision tiltmeter instrument systems located in an underground geophysical observatory, Seism. Instrum., 2022, vol. 58, no. 2, pp. 363–378. https://doi.org/10.3103/S0747923922040041

    Article  Google Scholar 

  46. Idarmachev, Sh.G. and Barsukov, O.M., “Dam” earthquakes and variation of electric resistivity of the rock massif in the region of the Chirkei water reservoir, Dokl. Akad. Nauk SSSR, 1978, vol. 240, no. 2, pp. 302–305.

    Google Scholar 

  47. Idarmachev, Sh.G., Cherkashin, V.I., Aliev, I.A., and Idarmachev, I.Sh., Variations in electrical parameters of the rock massif in the region of the high-altitude Chirkei HPP as an indicator of instability of the environmental state, Nadezhnost Bezop. Energ., 2013, no. 4, pp. 37–40.

  48. Ivanov, V.E. and Chervyakova, M.V., Flicker–noise generator on the basis of a simplified model of the avalanche process, Vestn. Tikhookean. Gos. Univ., 2022, no. 1, pp. 17–28.

  49. Khmelevskoi, V.K. and Shevnin, V.A., Ed., Elektricheskoe zondirovanie geologicheskoi sredy (Electric Sounding of the Geological Environment), vol. 1, Moscow: MGU, 1988.

  50. Khmelevskoi, V.K. and Shevnin, V.A., Ed., Elektricheskoe zondirovanie geologicheskoi sredy (Electric Sounding of the Geological Environment), vol. 2, Moscow: MGU, 1992.

  51. Khmelevskoi, V.K. and Shevnin, V.A., Ed., Elektrorazvedka metodom soprotivlenii (Electrical Prospecting by the Method of Resistivity), Moscow: MGU, 1994.

  52. Koronovsky, N.V., Zakharov, V.S., and Naimark, A.A., Short-term earthquake prediction: Reality, research promise, or a phantom project?, Moscow Univ. Geol. Bull., 2019, vol. 74, no. 4, pp. 333–341.

    Article  Google Scholar 

  53. Koefoed, O., Geosounding Principles: Resistivity Sounding Measurements, Amsterdam: Elsevier, 1979; Moscow: Nedra, 1984.

  54. Levitan, Yu.S., Panchenko, N.N., and Sinkevich, O.A., On the flicker-noise nature, Dokl. Akad. Nauk SSSR, 1988, vol. 32, no. 6, pp. 1359–1363.

    Google Scholar 

  55. Lukk, A.A., Deshcherevskii, A.V., Sidorin, A.Ya., and Sidorin, I.A., Variatsii geofizicheskikh polei kak proyavlenie determinirovannogo khaosa vo fraktal’noi srede (Geophysical Field Variations as a Manifestation of Deterministic Chaos in a Fractal Medium), Moscow: OIFZ RAN, 1996.

  56. Lysenko, V.B. and Pisarenko, V.F., Low-frequency asymptotics of the spectrum as a characteristic of the nonstationarity of some geophysical processes, in Geodinamika i prognoz zemletryasenii, Moscow, 1994, pp. 45–57.

  57. Mandel’baum, M.M., Epov, M.I., Morozova, G.M., Nevedrova, N.N., and El’tsov, I.N., Seismic activity and dynamics of electric conductivity of geoelectric section on the Baikal prognostic polygon, Geol. Geofiz., 1996, vol. 37, no. 6, pp. 88–94.

    Google Scholar 

  58. Matsaev, A.S., Flicker-noise physics and modification of the transistor model, Zh. Radioelektron., 2020a, no. 7. https://doi.org/10.30898/1684-1719.2020.7.15

  59. Matsaev, A.S., Flicker-noise: The features, diversity, and control, Zh. Radioelektron., 2020b, no. 10. https://doi.org/10.30898/1684-1719.2020.10.7

  60. Mogi, K., Earthquake Prediction, New York: Academic, 1985; Moscow: Mir, 1988.

  61. Mogi, K., Earthquake prediction program in Japan, J. Phys. Earth, 1995, vol. 43, no. 5, pp. 533–561. https://doi.org/10.4294/jpe1952.43.533

    Article  Google Scholar 

  62. Ostashevskii, M.G. and Sidorin, A.Ya., Apparatura dlya dinamicheskoi geoelektriki (Equipment for Dynamic Geoelectricity), Moscow: Nauka, 1990.

  63. Ostashevskii, M.G. and Sidorin, A.Ya., Multifunctional electrical sounding station and the results of its use, in Kompleksnye issledovaniya po prognozu zemletryasenii (Integrated Research on Earthquake Prediction), Moscow: Nauka, 1991, pp. 182–199.

  64. Parkhomov, A.G., Flicker-noise as a process sensitive to weak influences, in Strategiya zhizni v usloviyakh planetarnogo ekologicheskogo krizisa (Strategy of Life under Conditions of Planetary Ecological Crisis), St. Petersburg: Gumanistika, 2002, vol. 2, pp. 112–122.

  65. Razumenko, D.V., Low-frequency noise of electronic components as a tool for diagnosing internal defects, Kompon. Tekhnol., 2008. no. 9, pp. 168–174.

  66. Rikitake, T., Earthquake Prediction, New York: Elsevier, 1976; Moscow: Mir, 1979.

  67. Riznichenko, Yu.V., Size of the source of a crustal earthquake, in Issledovaniya po fizike zemletryasenii (Studies on the Physics of Earthquakes), Moscow: Nauka, 1976, pp. 9–27.

  68. Ryabinin, G.V., Polyakov, Yu.S., Gavrilov, V.A., and Timashev, S.F., Identification of earthquake precursors in the hydrogeochemical and geoacoustic data for the Kamchatka Peninsula by flicker-noise spectroscopy, Nat. Hazards Earth Syst. Sci., 2011, vol. 11, no. 2, pp. 541–548. https://doi.org/10.5194/nhess-11-541-2011

    Article  Google Scholar 

  69. Shalaginov, A.E., Nevedrova, N.N., and Shaparenko, I.O., Variations in electrophysical parameters from electromagnetic monitoring data as an indicator of fault zone activity, Geodin. Tektonofiz., 2018, vol. 9, no. 1, pp. 93–107. https://doi.org/10.5800/GT-2018-9-1-0339

    Article  Google Scholar 

  70. Schuster, G., Deterministic Chaos: An Introduction, Weinheim: Physik-Verlag, 1984; Moscow: Mir, 1988.

  71. Sidorin, A.Ya., Variations in electrical resistance of the upper layer of the Earth’s crust, Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 2, pp. 330–334.

    Google Scholar 

  72. Sidorin, A.Ya., Results high-precision observations of variations of apparent resistivity at the Garm polygon, Dokl. Akad. Nauk SSSR, 1986, vol. 290, no. 1, pp. 81–84.

    Google Scholar 

  73. Sidorin, A.Ya., Ed., Garmskii geofizicheskii poligon (The Garm Geophysical Polygon), Moscow: Nauka, 1990.

  74. Sidorin, A.Ya., Ed., Avtomatizirovannaya obrabotka dannykh na Garmskom geofizicheskom poligone (Automated Data Processing at the Garm Geophysical Polygon), Moscow: Nauka, 1991.

  75. Sidorin, A.Ya., Predvestniki zemletryasenii (Earthquake Precursors), Moscow: Nauka, 1992.

  76. Sidorin, A.Ya. and Ostashevskii, M.G., Technique of high-precision electrical sounding in search for earthquake precursors, Seism. Prib., 1996, nos. 25–26, pp. 189–211.

  77. Sobolev, G.A., Osnovy prognoza zemletryasenii (Fundamentals of Earthquake Prediction), Moscow: Nauka, 1993.

  78. Timashev, S.F., On the thermal fluctuation nature of flicker-noise in solids, Dokl. Akad. Nauk SSSR, 1984, vol. 279, no. 6, pp. 1407–1410.

    Google Scholar 

  79. Timashev, S.F., On the nature of flicker-noise, Zh. Fiz. Khim., 1993, vol. 67, no. 4, pp. 798–799.

    Google Scholar 

  80. Timashev, S.F., Flicker-noise spectroscopy in analysis of chaotic fluxes in distributed dynamical dissipative systems, Russ. J. Phys. Chem. A, 2001, vol. 75, no. 10, pp. 1742–1749.

    Google Scholar 

  81. Timashev, S.F. and Kostyuchenko, I.G., Flicker-noise in solar activity processes, Zh. Fiz. Khim., 1995, vol. 69.

    Google Scholar 

  82. Timashev, S.F., Grigor’ev, V.V., and Budnikov, E.Yu., Flicker-noise spectroscopy in the analysis of fluctuation dynamics of the electric potential in an electromembrane system at an above-limit current density, Russ. J. Phys. Chem. A, 2002, vol. 76, no. 3, pp. 475–481.

    Google Scholar 

  83. Urbakh, V.Yu., Matematicheskaya statistika dlya biologov i medikov (Mathematical Statistics for Biologists and Medical Professionals), Moscow: AN SSSR, 1963.

  84. Velikhov, E.P. and Zeigarnik, V.A., Eds., Proyavleniya geodinamicheskikh protsessov v geofizicheskikh polyakh (Manifestations of Geodynamic Processes in Geophysical Fields), Moscow: Nauka, 1993.

  85. Vstovsky, G.V., Deshcherevskii, A.V., Lukk, A.A., Sidorin, A.Ya., and Timashev, S.F., Search for electric earthquake precursors by the method of flicker noise spectroscopy, Izv., Phys. Solid Earth, 2005, vol. 41, no. 7, pp. 513–524.

    Google Scholar 

  86. Wesson, R.L. and Filson, J.R., Development and strategy of the earthquake prediction program in the United States, in Earthquake Prediction. An International Review, Simpson, D.W. and Richards, P.G., Eds., Washington, DC, 1981, pp. 671–680.

    Google Scholar 

  87. Yakubovskii, Yu.V., Elektrorazvedka. Uchebnik dlya vuzov (Electrical Prospecting: A Study Guide for Universities), Moscow: Nedra, 1980.

  88. Zaborovskii, A.I., Elektrorazvedka: Uchebnik dlya vuzov (Electrical Prospecting: A Study Guide for Universities), Moscow: Gostoptekhizdat, 1963.

Download references

Funding

The work was carried out according to project FMWU-2022-0010 of the State Task of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Bobachev, A. V. Deshcherevskii or A. Ya. Sidorin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobachev, A.A., Deshcherevskii, A.V. & Sidorin, A.Y. Changes in the Specific Electrical Resistivity of Rocks at Different Depths of the Geoelectric Section and Their Comparison with Seismicity. Izv. Atmos. Ocean. Phys. 58 (Suppl 1), S125–S139 (2022). https://doi.org/10.1134/S0001433822130114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822130114

Keywords:

Navigation