Skip to main content
Log in

Variations in Geophysical Fields during the Tonga Volcanic Eruption According to the Data of the Mikhnevo Large-Scale Research Facility

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This paper considers the results of registering geophysical field variations by the large-scale research facilities “Mid-Latitude complex of geophysical observations “Mikhnevo”” at the Sadovsky Institute of Geospheres Dynamics, Russian Academy of Sciences, caused by the catastrophic Tonga volcanic eruption in the period from December 19, 2021, to January 18, 2022. Atmospheric–ionospheric waves associated with the Tonga volcanic activity were a source of global geomagnetic disturbances. An independent estimate of the eruption time and propagation velocity of electromagnetic disturbances is made based on synchronous measurements of Schumann resonance signals, atmospheric pressure, and geomagnetic field variations. The background data obtained during the observation period of December 2021 to January 2022 are compared with the results of registering the Tonga volcanic eruption and two passages of Lamb’s surface wave around the Earth. The ranges of atmospheric pressure variations and the amplitudes of hydrogeological responses of the weakly confined and confined aquifers have been determined. Experimental data obtained by the Mikhnevo large-scale research facilities confirm the relationship between different geospheres and add the global database of geophysical parameters recorded at different epicentral distances from catastrophic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Adam, D., Tonga volcano eruption created puzzling ripples in Earth’s atmosphere, Nature, 2022, vol. 602, p. 497.

    Article  Google Scholar 

  2. Adushkin, V.V., Ovchinnikov, V.M., Sanina, I.A., Riznichenko, O.Yu., Mikhnevo: from seismic station no. 1 to a modern geophysical observatory, Izv., Phys. Solid Earth, 2016, vol. 52, no. 1, pp. 105–116.

    Article  Google Scholar 

  3. Adushkin, V.V., Rybnov, Yu.S., and Spivak, A.A., Geophysical effects of the eruption of Hunga–Tonga–Hunga–Ha’apai Volcano on January 15, 2022, Dokl. Earth Sci., 2022, vol. 504, no. 2, pp. 362–367. https://doi.org/10.1134/S1028334X22060034

    Article  Google Scholar 

  4. Amores, A., Monserrat, S., Marcos, M., Argüeso, D., Villalonga, J., Jorda, G., and Gomis, D., Numerical simulation of atmospheric lamb waves generated by the 2022 Hunga–Tonga volcanic eruption, Geophys. Res. Lett., 2022, vol. 49, e2022GL098240. https://doi.org/10.1029/2022GL098240

  5. Azeem, I., Vadas, S.L., Crowley, G., and Makela, J.J. Traveling ionospheric disturbances over the United States induced by gravity waves from the 2011 Tohoku tsunami and comparison with gravity wave dissipative theory, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 3430–3447. https://doi.org/10.1002/2016JA023659

    Article  Google Scholar 

  6. Besedina, A., Vinogradov, E., Gorbunova, E., and Svintsov, I., Chilean earthquakes: Aquifer responses at the Russian Platform, Pure Appl. Geophys., 2016, vol. 173, no. 2, pp. 321–330.

    Article  Google Scholar 

  7. Boldina, S.V., Kopylova, G.N., and Kobzev, V.A., Study of seismic effects on changes in groundwater pressure: Equipment and some well observation results for the Kamchatka Peninsula, Geodin. Tektonofiz., 2022, vol. 13, no. 2, p. 0594. https://doi.org/10.5800/GT-2022-13-2-0594

  8. Bornyakov, S.A., Miroshnichenko, A.I., Vstovskii, G.V., Sintsov, A.E., and Salko, D.V., New approach to strong earthquake prediction in the South Baikal region on the basis of rock deformation monitoring data: Methodology and results, Geodin. Tektonofiz., 2022, vol. 13, no. 2, p. 0588. https://doi.org/10.5800/GT-2022-13-2-0588

  9. Brodsky, E.E. and Lay, T., The wave blown around the world, Science, 2022, vol. 377, no. 6601, pp. 30–31. https://doi.org/10.1126/science.abq5392

  10. Cimarelli, C. and Genareau, K., A review of volcanic electrification of the atmosphere and volcanic lightning, J. Volcanol. Geotherm. Res., 2022, vol. 422, p. 107449. https://doi.org/10.1016/j.jvolgeores.2021.107449

    Article  Google Scholar 

  11. Curto, J.J., Geomagnetic solar flare effects: A review, J. Space Weather Space Clim., 2020, vol. 10, p. 27. https://doi.org/10.1051/swsc/2020027

    Article  Google Scholar 

  12. Duncombe, J., The surprising reach of Tonga’s giant atmospheric waves, EOS, 2022, vol. 103. https://doi.org/10.1029/2022EO220050

  13. Dyagilev, R.A. and Sdel’nikova, I.A., The unique large-scale research facility “Seismic infrasound array for monitoring Arctic cryolith zone and continuous seismic monitoring of the Russian Federation, neighboring territories, and the world”, Geodin. Tektonofiz., 2022, vol. 13, no. 2, p. 0591. https://doi.org/10.5800/GT-2022-13-2-0591

  14. Gavrilov, B.G., Poklad, Y.V., Ryakhovsky, I.A., and Ermak, V.M., Dependence of D-region perturbations of the midlatitude ionosphere on the spectral composition of the X-ray radiation of solar flares according to experimental data, Geomagn. Aeron., 2022, vol. 62, nos. 1–2, pp. 98–103. https://doi.org/10.1134/S0016793222020086

  15. Gorbunova, E.M., Besedina, A.N., Sanina, I.A., and Konstantinovskaya, N.L., A response of the reservoir–well system to distant earthquakes, Geodin. Tektonofiz., 2022, vol. 13, no. 2, p. 0630. https://doi.org/10.5800/GT-2022-13-2s-0630

  16. Kocharyan, G.G., Loktev, D.N., Ryahovskii, I.A., and Sanina, I.A., Large-scale research facility “Midlatitude geophysical observation complex Mikhnevo,” Geodin. Tektonofiz., 2022, vol. 13, no. 2, p. 0590. https://doi.org/10.5800/GT-2022-13-2-0590

  17. Kopylova, G.N. and Boldina, S.V., Hydrogeological earthquake precursors and volcanic activations according to well observations of the Kamchatka Peninsula, Nauki Zemle Nedropol’zovanie. Gidrogeol. Inzh. Geol., 2021, vol. 44, no. 2, pp. 141–150. https://doi.org/10.21285/2686-9993-2021-44-2-141-150

    Article  Google Scholar 

  18. Kubota, T., Saito, T., and Nishida, K., Global fast-traveling driven by atmospheric Lamb waves on the 2022 Tonga eruption, Science, 2022, vol. 377, no. 6601, pp. 91–94. https://doi.org/10.1126/science.abo4364

    Article  Google Scholar 

  19. Lin, J.-T., Rajesh, P.K., Charles, C.H., et al., Rapid conjugate appearance of the giant ionospheric Lamb wave in the northern hemisphere after Hunga–Tonga volcano eruptions, Geophys. Res. Lett., 2022, vol. 49, no. 8. https://doi.org/10.1029/2022GL098222

  20. Matoza, R.S., Fee, D., Assink, J.D., Iezzi, A.M., Green, D.N., Kim, K., and Wilson, D.C., Atmospheric waves and global seismoacoustic observations on the January 2022 Hunga eruption, Tonga, Science, 2022, vol. 377, no. 6601, pp. 95–100. https://doi.org/10.1126/science.abo7063

    Article  Google Scholar 

  21. McNamara, D.E. and Buland, R.P., Ambient noise levels in the continental United States, Bull. Seismol. Soc. Am., 2004, vol. 94, no. 4, pp. 1517–1527. https://doi.org/10.1785/012003001

    Article  Google Scholar 

  22. Nickolaenko, A., Schekotov, A., Hayakawa, M., Romero, R., and Izutsu, J., Electromagnetic manifestations of Tonga eruption in Schumann resonance band, Social Science Research Network, 2022. https://doi.org/10.2139/ssrn.4051361.

  23. Poklad, Y.V., Gavrilov, B.G., Ermak, V.M., Lyakhov, A.N., Rybakov, V.A., and Ryakhovskiy, I.A., Recovery of the parameters of the D-layer of the ionosphere according to the amplitude–phase measurements on the dual-frequency VLF path, in Russian Open Conference on Radio-Wave Propagation (RWP 2019), Kazan, Russia, 2019, pp. 240–243.

  24. Poklad, Y.V., Ryakhovsky, I.A., Gavrilov, B.G., Ermak, V.M., Kozakova, E.N., and Achkasov, N.S., Investigation of the reaction of Schumann resonances to short transient geophysical events under the influence of atmospheric electromagnetic noise, J. Geophys. Res.: Atmos., 2022, vol. 127, e2022JD036820. https://doi.org/10.1029/2022JD036820

  25. Popova, O.P., Jenniskens, P., Emelʼyanenko, V.V., et al., Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization, Science, 2013, vol. 342, pp. 1069–1073.

    Article  Google Scholar 

  26. Rodríguez-Camacho, J., Fornieles, M.C., Carrión, J.A., Portí, S., Toledo-Redondo, S., and Salinas, A., On the need of a unified methodology for processing Schumann resonance measurements, J. Geophys. Res.: Atmos., 2018, vol. 123, no. 23, pp. 13277–13290. https://doi.org/10.1029/2018JD029462299

    Article  Google Scholar 

  27. Roldugin, V.C., Maltsev, Y.P., Vasiljev, A.N., Shvets, A.V., and Nikolaenko, A.P., Changes of Schumann resonance parameters during the Solar proton event of 14 July 2000, J. Geophys. Res.: Space Phys., 2003, vol. 108, no. A3. https://agupubs.onlinelibrary.wiley.com/ doi/303abs/https://doi.org/10.1029/2002JA009495

  28. Ryakhovskii, I.A., Gavrilov, B.G., Poklad, Y.V., Bekker, S., and Ermak, V., The state and dynamics of the ionosphere from synchronous records of ULF/VLF and HF/VHF radio signals at geophysical observatory Mikhnevo, Izv., Phys. Solid Earth, 2021, vol. 57, pp. 718–730.

    Article  Google Scholar 

  29. Sentman, D.D., Magnetic elliptical polarization of Schumann resonances, Radio Sci., 1987, vol. 22, no. 4, pp. 595–606. https://doi.org/10.1029/RS022i004p00595

    Article  Google Scholar 

  30. Terry, J.P., Goff, J., Winspear, N., Bongolan, V.P., and Fisher, S., Tonga volcanic eruption and tsunami, January 2022: Globally the most significant opportunity to observe an explosive and tsunamigenic submarine eruption since AD 1883 Krakatau, Geosci. Lett., 2022, vol. 9, no. 1, pp. 1–11. https://doi.org/10.1186/s40562-022-00232-z

    Article  Google Scholar 

  31. Themens, D.R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S., McCaffrey, A., et al., Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption, Geophys. Res. Lett., 2022, vol. 49, e2022GL098158. https://doi.org/10.1029/2022GL098158

  32. Vergoz, J., Hupe, P., Listowski, C., Le Pichon, A., Garcés, M.A., Marchetti, E., et al., IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis, Earth. Planet. Sci. Lett., 2022, vol. 591, p. 117639. https://doi.org/10.1016/j.epsl.2022.117639

    Article  Google Scholar 

  33. Villante, U. and Regi, M., Solar flare effect preceding Halloween storm (28 October 2003): Results of a worldwide analysis, J. Geophys. Res., 2008, vol. 113, p. A00A05. https://doi.org/10.1029/2008JA013132

    Article  Google Scholar 

  34. Vinogradov, E., Gorbunova, E., Besedina, A., and Kabychenko, N., Earth tide analysis specifics in case of unstable aquifer regime, Pure Appl. Geophys., 2017, vol. 174, no. 6. https://doi.org/10.1007/s00024-017-1585-z

  35. Webb, S.C., Seismic noise on land and on the sea floor, in International Handbook of Earthquake and Engineering Seismology, Lee, W.H.K., et al., Eds., Amsterdam: Academic Press, 2002, pp. 305–318. https://doi.org/10.1016/S0074-6142(02)80222-4.

Download references

ACKNOWLEDGMENTS

We thank Dr. Sci. (Phys.–Mat.) I.A. Sanina, head of the Seismological Methods for Studying the Lithosphere laboratory, for providing seismic registration data for the period from December 2021 to January 2022, as well as V.M. Ermak and D.V. Egorov for help in obtaining and processing geomagnetic and infrasound data.

Funding

This study was carried out as part of State Tasks of the Sadovsky Institute of Geospheres Dynamics, Russian Academy of Sciences (topics nos. 122032900172-5 and 122032900175-6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. M. Gorbunova, I. A. Ryakhovskiy, B. G. Gavrilov, Yu. V. Poklad, S. M. Petukhova or A. N. Besedina.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunova, E.M., Ryakhovskiy, I.A., Gavrilov, B.G. et al. Variations in Geophysical Fields during the Tonga Volcanic Eruption According to the Data of the Mikhnevo Large-Scale Research Facility. Izv. Atmos. Ocean. Phys. 58, 1350–1366 (2022). https://doi.org/10.1134/S0001433822110044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822110044

Keywords:

Navigation