Skip to main content
Log in

Global Heat. Geofluids. Geodynamic Сatastrophes

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The Earth is a powerful heat generator, and endogenous heat is the main and most constant factor controlling the changing intraterrestrial state of matter and the transport of molten deep-set material to the surface. Fluids (melts and gases) are transported through the global endo-drainage system (GEDS): a hydraulically united, high-pressurised megastructure with external parts represented by the subcrustal asthenolayer. In various parts of the subcrustal asthenolayer of GEDS, heating centers, where volumetric gas–fluid anomalies of deep and metamorphogenic genesis are formed and with which the mechanisms of preparation of strong earthquakes are associated, volumetric gas–fluid bodies of endo- and metamorphic origin appear periodically. Rapidly growing short-lived extension structures appear near the surface at the final stage of preparation for seismic catastrophes. They are a near-surface reflection of gas–fluid domes that are formed in the asthenolayer under the future hypocenter. The ability of deformation impulses–replicas to migrate after an earthquake along the GEDS is shown. The successive chain of deformation impulses on the long-period deformogram indicates that they belong to a single thermal process of global coverage. Based on the above geological and geophysical reconstructions and with allowance for the numerous catastrophes that were noted in thermally particularly “sensitive” near-surface media, there is reason to believe that an increase in the heating of the outer parts of the Earth and an increase in the level of seismicity occur due to the deep-set heat sources of the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Babeshko, V.A., Shestopalov, V.L., Kalinchuk, V.V., and Sheremet’ev, V.M., Assessing the state of seismicity in zones of increased geodynamics, Ekol. Vestn. Nauchn. Tsentrov Chernomorsk. Ekon. Sotr., 2012, vol. 9, no. 2, pp. 7–10.

    Google Scholar 

  2. Borell, B., Deep structure images under Hawaii, Nature, 2009. https://doi.org/10.1038/news.2009.1121

  3. Cagney, N. and Lithgow-Bertelloni, C., Dynamics and excess temperature of a plume throughout its life cycle, Geophys. J. Int., 2016, vol. 205, no. 3, pp. 1574–1588.

    Article  Google Scholar 

  4. Carey, S.W., Theories of the Earth and Universe, Stanford, Calif.: Stanford Univ. Press, 1988; Moscow: Mir, 1991.

  5. Cox, J.W., Long axis orientation in elongated boreholes and correlation with rock stress data, in SPWLA Twenty Fourth Annual Logging Symposium Transactions, Calgary: Alberta, Canada, 1983, vol. 1, pp. 1–17.

  6. Dobretsov, N.L. and Kirdyashkin, A.G., Glubinnaya geodinamika (Deep Geodynamics), Novosibirsk: SO RAN, NITs OIGGM, 1994.

  7. Eliseev, N.A., Metamorfizm (Metamorphism), Leningrad: LGU, 1959.

    Google Scholar 

  8. Eliseev, N.A., Strukturnaya petrologiya (Structural Petrology), Leningrad: LGU, 1953.

  9. Frost, B.R. and Frost, C.D., Essentials of Igneous and Metamorphic Petrology, Cambridge: Cambridge Univ. Press, 2014.

    Google Scholar 

  10. Fyfe, W.S., Price, N.J., and Thompson, A.B., Fluids in the Earth’s crust, in Developments in Geochemistry, New York: Elsevier Scientific, 1978.

    Google Scholar 

  11. Gufel’d, I.L., Seismicheskii protsess: Fiziko-khimicheskie aspekty (The Seismic Process: Physical and Chemical Aspects), Moscow: TsNIIMash, 2007.

  12. Kalinin, V.A., Rodkin, M.V., and Tomashevskaya, I.S., Geodinamicheskie effekty fiziko–khimicheskikh prevrashchenii v tverdoi srede (Geodynamic Effects of Physical and Chemical Transformations in Solid Media), Moscow: Nauka, 1989.

  13. Kol’skaya sverkhglubokaya (The Kola Superdeep), Kozlovskii, E.A., Ed., Moscow: Nedra, 1984.

    Google Scholar 

  14. Kopnichev, Yu.F. and Sokolova, I.N., Mantle fluids and strong crustal earthquakes: The stress-deformation state and seismicity of the lithosphere, in Napryazhenno-deformirovannoe sostoyanie i seismichnost’ litosfery: Tr. Vseross. soveshch. “Napryazhennoe sostoyanie litosfery, ee deformatsiya i seismichnost’,” g. Irkutsk, 26–29 avg. 2003 g. (The Stress-Deformation State and Seismicity of the Lithosphere: Proceedings of the Meeting “The Stress State of the Lithosphere, Its Deformation, and Seismicity,” Irkutsk, August 26–29, 2003), Novosibirsk: GEO, 2003.

  15. Kornprobst, J., Metamorphic Rocks and Their Geodynamic Significance: A Petrological Handbook, Springer, 2002.

    Google Scholar 

  16. Krasnyi, L.I., Ascending deep and shallow structures and associated minerageny, Otechestvennaya Geol., 2000, no. 6, pp. 23–28.

  17. Kulikov, G.V., Spektor, S.V., Rogozhin, E.A., Lukasheva, R.N., and Sysolin, A.I., On methods of short-term earthquake prediction based on monitoring the hydrogeodeformation field, Izv., Atmos. Ocean. Phys., 2020, vol. 55, no. 11, pp. 1715–1725. https://doi.org/10.1134/S0001433819110082

    Article  Google Scholar 

  18. Letnikov, F.A., The Earth’s degassing as a global process of self-organization, in Degazatsiya Zemli: Geodinamika, geoflyuidy, neft' i gaz: Materialy Mezhdunar. konf. (Degassing of the Earth: Geodynamics, Geofluids, Oil and Gas: Proceedings of Int. Conf.), Moscow: GEOS, 2002, pp. 6–7.

  19. Letnikov, F.A. and Dorogokupets, P.I., The role of superdeep fluid systems of the Earth’s core in endogenic geological processes, Dokl. Earth. Sci., 2001, vol. 378, no. 4, pp. 500–502.

    Google Scholar 

  20. Lithgow-Bertelloni, C. and Guynn, J.H., Origin of the lithospheric stress field, J. Geophys. Res.: Solid Earth, 2004, vol. 109, no. B1.

  21. Lithgow-Bertelloni, C. and Silver, P.G., Dynamic topography, plate driving forces and the African superswell, Nature, 1998, vol. 395, pp. 269–272.

    Article  Google Scholar 

  22. Marakushev, A.A., Geological consequences of degassing of the Earth’s core, in Degazatsiya Zemli: Geodinamika, geoflyuidy, neft' i gaz: Materialy Mezhdunar. konf. (Degassing of the Earth: Geodynamics, Geofluids, Oil and Gas: Proceedings of Int. Conf.), Moscow: GEOS, 2002, pp. 8–10.

  23. Marakushev, A.A., Fluid mode of renewal of the crust of the Earth and other planets and satellites of the Solar system, in Sistema Planety Zemlya (“Netraditsionnye voprosy geologii”). Materialy XII nauchnogo seminara (The System of the Planet Earth (Nontraditional Problems in Geology): Proceedings the XII Scientific Seminar), Moscow, 2004, pp. 268–282.

  24. Milanovskii, E.E., Some regularities of the Earth’s evolution in the Phanerozoic, Geotektonika, 1978, no. 6, pp. 3–16.

  25. Milanovskii, E.E., The Earth’s pulsations, Geotektonika, 1995, no. 5, pp. 3–24.

  26. Moulas, E., Kaus, B., and Jamtveit, B., Dynamic pressure variations in the lower crust caused by localized fluid-induced weakening, Commun. Earth Environ., 2022, vol. 3, p. 157. https://doi.org/10.1038/s43247-022-00478-7

    Article  Google Scholar 

  27. Ni, S.D. and Helmberger, D.V., Seismological constrains on the South Africa superplume could be the oldest distinct structure on the Earth, Earth Planet Sci. Lett., 2003, vol. 206, nos. 1–2, pp. 119–131.

    Article  Google Scholar 

  28. Ni, S., Helmberger, D.V., and Tromp, J., Three-dimensional structure of the African superplume from waveform modelling, Geophys. J. Int., 2005, vol. 161, no. 2, pp. 283–294. https://doi.org/10.1111/j.1365-246X.2005.02508.x

    Article  Google Scholar 

  29. Ofitsial’nyi byulleten Gos. komiteta SSSR po delam izobretenii i otkrytii. Otkrytiya. Izobreteniya. Publikatsiya ob otkrytiyakh, zaregistrirovannykh v Gosudarstvennom reestre otkrytii SSSR (Official Bulletin of the USSR State Committee for Inventions and Discoveries. Discoveries. Inventions. Publication on Discoveries Registered in the State Register of Discoveries of the USSR), Moscow: GOSNITI, 1983, no. 46.

  30. Shebalin, N.V., Sil’nye zemletryaseniya (Strong Earthquakes), Moscow: Izd. Akad. gorn. nauk, 1997.

  31. Sokolov, S.Yu. and Trifonov, V.G., Role of the asthenosphere in transfer and deformation of the lithosphere: The Ethiopian–Afar superplume and the Alpine–Himalayan Belt, Geotectonics, 2012, vol. 46, no. 3, pp. 171–184

    Article  Google Scholar 

  32. Sorokhtin, O.G. and Ushakov, S.A., Razvitie Zemli (The Earth’s Development), Moscow: MGU, 2002.

  33. Stazhilo-Alekseev, S.K., Monitoring of geodynamic endogenous processes of the territory of the Russian Federation, Razved. Okhr. Nedr., 2007, no. 7, pp. 25–31.

  34. Stazhilo-Alekseev, S.K., Lygin, A.M., Makeev, V., and Pronin, A., Assessment of current geodynamic activity of the East European platform as a new direction of monitoring of the state of the Earth’s interior, Razved. Okhr. Nedr., 2008, no. 10, pp. 69–73.

  35. van der Hilst, R.D., Widiyantoro, S., and Engdahl, E.R., Evidence for deep mantle circulation from global tomography, Nature, 1997, vol. 386, pp. 578–584.

    Article  Google Scholar 

  36. Vartanyan, G.S., Mestorozhdeniya uglekislykh vod gornoskladchatykh regionov (Carbonated Water Deposits in Fold-Mountain Regions), Moscow: Nedra, 1977.

  37. Vartanyan, G.S., The hydrogeodeformation field at Spitak and California earthquakes, Otechestvennaya Geol., 1992, no. 1, pp. 3–12.

  38. Vartanyan, G.S., Role of the hydrogeodeformation field in the evolution of subsurface hydrosphere, Otechestvennaya Geol., 1993, no. 1, pp. 91–95.

  39. Vartanyan, G.S., Regional system of geodynamic monitoring and the problem of sustainable development of states in earthquake-prone regions of the world, Otechestvennaya Geol., 1999, no. 2, pp. 37–45.

  40. Vartanyan, G.S., Endogenous geological processes, in Ekogeologiya Rossii (Ecological Geology of Russia), vol. 1: Evropeiskaya chast' (The European Part), Moscow: Geoinformmark, 2000a, pp. 25–30.

  41. Vartanyan, G.S., The fluidosphere and endo-drainage systems of the Earth as leading factors of geological evolution, Otechestvennaya Geol., 2000b, no. 6, pp. 14–22.

  42. Vartanyan, G.S., Geodynamic processes in the fluidosphere and some of their consequences, Otechestvennaya Geol., 2003, no. 2, pp. 44–50.

  43. Vartanyan, G.S., The Earth’s fluidosphere, in Planeta Zemlya: Entsiklopedicheskii Spravochnik (The Planet Earth: Encyclopedic Handbook), vol. 1: Tektonika i geodinamika (Tectonics and Geodynamics), Krasnyi, L.I., Petrov, O.V., and Blyuman, B.A., Eds., St. Petersburg: VSEGEI, 2004, pp. 144–149.

  44. Vartanyan, G.S., The endo-drainage system of the Earth and seismicity: Prospects of monitoring, Otechestvennaya Geol., 2006, no. 1, pp. 41–52.

  45. Vartanyan, G.S., Stazhilo-Alekseev, S.K., and Zal’tsberg, E.A., Hydrogeodeformation monitoring: Prospects of seismic forecasting, Otechestvennaya Geol., 2013, no. 6, pp. 61–70.

  46. Vartanyan, G.S., Geodinamicheskie katastrofy i ikh prognoz: Endodrenazh zemli, deformatsii, seismichnost’ (Geodynamic Catastrophes and Their Prediction: Endo-Drainage of the Earth, Deformations, and Seismicity), Moscow: Geoinformmark, 2015.

  47. Vartanyan, G.S., The global endo-drainage system: Some fluid-physical mechanisms of geodynamic processes, Geodin. Tektonofiz., 2019, vol. 10, no. 1, pp. 53–78. https://doi.org/10.5800/GT-2019-10-1-0404

    Article  Google Scholar 

  48. Vartanyan, G.S., Global endodrainage system: Fluid geodynamics of strong crustal earthquakes, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 11, pp. 1436–1460. https://doi.org/10.1134/S0001433821110098

    Article  Google Scholar 

  49. Vartanyan, G.S., Bredehoeft, J.D., Roeloffs, E., Hydrogeological methods for studying tectonic strain, Sov. Geol., 1991, no. 9, pp. 3–12.

  50. Winkler, H.G.F., Petrogenesis of Metamorphic Rocks, Springer, 1976.

    Book  Google Scholar 

  51. Wolff, C.J., Bjarnason, I.Th., VanDecar, J.C., and Solomon, S.C, Seismic structure of Iceland mantle plume, Nature, 1997, vol. 385, pp. 245–247. https://doi.org/10.1038/385245a0

    Article  Google Scholar 

  52. Yarmolyuk, V.A. and Kovalenko, V.I., Deep geodynamics and mantle plumes: Their role in the formation of the Central Asian fold belt, Petrology, 2003, vol. 11, no. 6, pp. 504–531.

    Google Scholar 

  53. Zavaritskii, A.N. and Sobolev, V.S., Fiziko-khimicheskie osnovy petrografii izverzhennykh gornykh porod (Physical and Chemical Foundations of Rock Eruption Petrography), Moscow: Gosgeoltekhizdat, 1961.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Vartanyan.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vartanyan, G.S. Global Heat. Geofluids. Geodynamic Сatastrophes. Izv. Atmos. Ocean. Phys. 58, 1312–1324 (2022). https://doi.org/10.1134/S0001433822100097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822100097

Keywords:

Navigation