Skip to main content
Log in

On the Ore-Forming Role of Small Intrusions on the Shallow Deposits of Epithermal and Porphyre Types

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

The controversial topic of genetic relationships of shallow magmatogenic ore deposits with associated complexes of small intrusive bodies or separate syn-ore bodies is discussed in this article. Materials of the field study by the authors of four epithermal gold deposits of the Amur region are used. These materials are supplemented by an analysis of published data on the conditions and geological settings of the localization of a number of other epithermal and shallow Cu-Mo-porphyry deposits in various regions of Russia and other countries. The active thermal participation signs of syn-ore stocks and sill in retraction to intrusions and initiation of near-intrusive convection of deep-seated fluids during ore formation at epithermal gold deposits of the Amur region (Pokrovskoe, Pioner, Zheltunak, Bamskoe, and Mnogovershinnoe) have been established and confirmed by model experiments. These signs and zoning of metal deposition are also established at epithermal and porphyry deposits in other regions of Russia (Ural, Transbaikalia, and Kamchatka) and in other countries. Favorable conditions for ore accumulations have been identified. These conditions are associated with shallow syn-ore small intrusions and magma chambers at 11 characteristic deposits, including large and unique ones (Pioner, Mnogovershinnoe, Bingham, and Klaimax).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Bamskoe zolotorudnoe mestorozhdenie: Geologiya, mineralogiya i geokhimiya (The Bam Gold Field: Geology, Mineralogy, and Geochemistry), Moiseenko, V.G., Ed., Vladivostok: Dal’nauka, 1998.

    Google Scholar 

  2. Berzina, A.P., Berzina, A.N., Gimon, V.O., Bayanova, T.B., Kiseleva, V.Yu., Krymskii, R.Sh., Lepekhina, E.N., and Palesskii, S.V., The Zhireken porphyry Mo ore-magmatic system (eastern Transbaikalia): U-Pb age, sources, and geodynamic setting, Russ. Geol. Geophys., 2015, vol. 56, no. 3, pp. 446–465.

    Article  Google Scholar 

  3. Borovikov, A.A., Lapukhov, A.S., Borisenko, A.S., and Seretkin, Yu.V., The Asachinskoe epithermal Au-Ag deposit in southern Kamchatka: Physicochemical conditions of formation, Russ. Geol. Geophys., 2009, vol. 50, no. 8, pp. 693–702.

    Article  Google Scholar 

  4. Burnham, C.W., Hydrothermal fluids at the magmatic stage, in Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., Ed., New York: Holt, Rinehart and Winston, 1967, pp. 34–76.

    Google Scholar 

  5. Cathles, L.M., An analysis of the cooling of intrusive by ground water convection which includes boiling, Econ. Geol., 1977, vol. 72, pp. 804–826.

    Article  Google Scholar 

  6. Cathles, L.M. and Shannon, R., How potassium silicate alteration suggests the formation of porphyry copper deposits begins with nearly explosive but barren expulsion of large volumes of magmatic water, Earth Planet. Sci. Lett., 2007, vol. 262, pp. 92–108.

    Article  Google Scholar 

  7. Cloos, M., Bubblining magma chambers, cupolas, and porphyry copper deposits, Int. Geol. Rev., 2001, vol. 43, pp. 285–311.

    Article  Google Scholar 

  8. Cooke, D.R., Hollings, P., and Walshe, J.L., Giant porphyry deposits: Characteristics, distribution, and tectonic controls, Econ. Geol., 2005, vol. 100, pp. 801–818.

    Article  Google Scholar 

  9. Danilov, A.A., Geochemical characteristics and zoning of gold mineralization in the Bam deposit in the Amur region, Extended Abstract of Cand. Sci. (Geol.–Mineral.) Dissertation, Blagoveshchensk: Amur Complex Research Institute, Far East Division, Russian Academy of Sciences, 1998.

  10. Dilles, J.H., The petrology of the Yerington batholiths, Nevada: Evidence for the evolution of porphyry copper ore fluids, Econ. Geol., 1987, vol. 82, pp. 1750–1789.

    Article  Google Scholar 

  11. Driesner, T. and Geiger, S., Numerical simulation of multiphase fluid flow in hydrothermal systems, Rev. Mineral. Geochem., 2007, vol. 65, no. 6, pp. 187–212.

    Article  Google Scholar 

  12. Drummond, S.E. and Ohmoto, H., Chemical evolution and mineral deposition in boiling hydrothermal systems, Econ. Geol., 1985, vol. 80, pp. 126–147.

    Article  Google Scholar 

  13. Favorskaya, M.A., Osnovnye problemy svyazi orudeneniya i magmatizma (Main Problems of Coupling between Mineralization and Magmatism), Moscow: Nedra, 1987.

  14. Gordienko, I.V., On the paragenetic relationship of polymetallic mineralization with the formation of small granitoid intrusions in the Eastern Sayan, Geol. Rudn. Mestorozhd., 1975, vol. 17, no. 4, pp. 103–106.

    Google Scholar 

  15. Gorzhevskii, D.I. and Kozerenko, V.N., Svyaz’ endogennogo rudoobrazovaniya s magmatizmom i metamorfizmom (Relation of Endogenous Ore Formation with Magmatism and Metamorphism), Moscow: Nedra, 1965.

  16. Gvozdev, V.I., Rudno-magmaticheskie sistemy skarnovykh sheelit-sul’fidnykh mestorozhdenii Vostoka Rossii (Ore-Magmatic Systems of Skarn Scheelite–Sulfide Deposits in Eastern Russia), Vladivostok: Dal’nauka, 2010.

  17. Hayba, D.O. and Ingebritsen, S.E., Multiphase groundwater flow near cooling plutons, J. Geophys. Res., 1997, vol. 102, no. B6, pp. 12235–12252.

    Article  Google Scholar 

  18. Ingebritsen, S.E., Geiger, S., Hurwitz, S., and Dtiesner, T., Numerical simulation of magmatic hydrothermal systems, Rev. Geophys., 2010, vol. 48, no. 1, pp. 31–64.

    Article  Google Scholar 

  19. Khomich, V.G. and Boriskina, N.G., Injective structures and gold–silver mineralization of the Pokrovskoe ore field (the Amur region), Geol. Rudn. Mestorozhd., 2003, vol. 45, no. 1, pp. 24–43.

    Google Scholar 

  20. Konstantinov, M.M. and Kosovets, T.N., The Sikhote–Alin province, in Zolotorudnye mestorozhdeniya Rossii (Gold Fields of Russia), Moscow: Akvarel’, 2010, pp. 242–259.

  21. Krivtsov, A.I., Geologicheskie osnovy prognozirovaniya i poiskov medno–porfirovykh mestorozhdenii (Geological Foundations for Forecasting and Prospecting for Porphyry–Copper Deposits), Moscow: Nedra, 1983.

  22. Krivtsov, A.I., Prikladnaya metallogeniya (Applied Metallogeny), Moscow: Nedra, 1989.

  23. Krivtsov, A.I., Migachev, I.F., and Popov, V.S., Medno-porfirovye mestorozhdeniya mira (Porphyry–Copper Deposits of the World), Moscow: Nedra, 1986.

  24. Medno-molibdenovaya rudnaya formatsiya (na primere Sibiri i sopredel’nykh regionov) (Copper–Molybdenum Ore Formation (the Test Case of Siberia and Adjacent Regions)), Kuznetsov, V.A., Ed., Novosibirsk: Nauka, 1977.

    Google Scholar 

  25. Moiseenko, V.G. and Eirish, L.V., Zolotorudnye mestorozhdeniya Vostoka Rossii (Gold Deposits of Eastern Russia), Vladivostok: Dal’nauka, 1996.

  26. Nekrasov, I.Ya., Origin of the volcanogenic Asachin gold deposit in Kamchatka, Dokl. Earth Sci., 1996, vol. 348, no. 4, pp. 553–555.

    Google Scholar 

  27. Neroda, O.N. and Ostapenko, N.S., Features of the localization of the Zheltunak gold ore occurrence in the Tygda–Ulunga gold-bearing cluster (Upper Amur Region, Russia), in Zoloto severnogo obramleniya Patsifika (Gold of the Northern Framing of the Pacific), Magadan: SVKNII DVO RAN, 2011, pp. 155–156.

  28. Ostapenko, N.S., Self-development of screened hydrothermal systems and hydraulic fracturing in the formation of structures and ores: A general model of hydrothermal ore deposition, Dokl. Earth Sci., 2005, vol. 401, no. 2, pp. 236–239

    Google Scholar 

  29. Ostapenko, N.S., Open and closed hydrothermal systems and their ore potential: Comparative analysis, in Voprosy geologii i kompleksnogo osvoeniya prirodnykh resursov Vostochnoi Azii (Problems of Geology and Integrated Development of Natural Resources of East Asia), Blagoveshchensk: IGiP DVO RAN, 2012, pp. 124–127.

  30. Ostapenko, N.S. and Neroda, O.N., Substantiation of the ore-forming role of dacite sill at the Pokrovskoe gold deposit, in Voprosy geologii i kompleksnogo osvoeniya prirodnykh resursov Vostochnoi Azii (Problems of Geology and Integrated Development of Natural Resources of East Asia), Blagoveshchensk: IGiP DVO RAN, 2012, pp. 117–120.

  31. Ostapenko, N.S., Neroda, O.N., Borodavkin, S.I., and Bespalov, V.V., Experimental modeling of fluid convection over the surface of a sill-like magmatic body intruded into a screened ore-forming hydrothermal system, in Geodinamika i minerageniya Severo-Vostochnoi Azii (Geodynamics and Minerageny of Northeast Asia), Ulan-Ude: GIN SO RAN, 2013a, pp. 270–273.

  32. Ostapenko, N.S., Neroda, O.N., and Safronov, P.P., Geological conditions, factors of formation and features of mineralogy of the Pokrovsky gold–silver deposit ores (the Amur region), Tikhookean. Geol., 2013b, vol. 32, no. 5, pp. 19–34.

    Google Scholar 

  33. Ostapenko, N.S. and Neroda, O.N., Experimental confirmation of the ore-forming role of dacite sill at the Pokrovskoe epithermal gold deposit in the Amur region, Fundam. Issled., 2015, no. 2, pp. 6050–6054.

  34. Petrenko, I.D., The Kamchatka province, in Zolotorudnye mestorozhdeniya Rossii (Gold Deposits of Russia), Moscow: Akvarel’, 2010, pp. 260–293.

  35. Petrovskaya, N.V., Samorodnoe zoloto (Gold Nuggets), Moscow: Nauka, 1973.

  36. Phillips, W.J., Mechanical effects of retrograde boiling and its probable importance in the formation of some porphyry ore deposits, Inst. Min. Metall. Trans. Sec. B, 1973, vol. 82, pp. 90–98.

    Google Scholar 

  37. Richards, J.P., Giant ore deposits formed by optimal alignments and combinations of geological processes, Nat. Geosci., 2013, no. 6, pp. 911–916.

  38. Roedder, E., Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado, Econ. Geol., 1971, vol. 66, pp. 98–118.

    Article  Google Scholar 

  39. Rubright, R.D. and Hart, O.J., Non-porphyry ore of the Bingham district, Utah, in Ore Deposits of the United States 1933–1967, Ridge, J.D., Ed., Am. Inst. of Mining, Metallurgical and Petroleum Engineers, 1968, vol. 1, pp. 886–907.

    Google Scholar 

  40. Sharapov, V.N., Influence of structural–dynamic conditions of discharge of hydrothermal volcanic systems on ore formation in their interiors, Dokl. Earth Sci., 2010, vol. 432, no. 1, pp. 697–702.

    Article  Google Scholar 

  41. Sharapov, V.N., Lapukhov, A.S., Guzman, B.V., and Cherepanova, V.K., Dynamics of phase fronts in magmagenic fluid in the formation of gold and silver deposits in Southern Kamchatka, Russ. Geol. Geophys., 2012, vol. 53, no. 9, pp. 837–852.

    Article  Google Scholar 

  42. Shilo, N.A., Gold deposits of metamorphogenic, plutonogenic, and volcanogenic formations, in Geologo–geokhimicheskie osobennosti mestorozhdenii poleznykh iskopaemykh na Severo-Vostoke SSSR (Geological and Geochemical Features of Mineral Deposits in the Northeastern USSR), Magadan: SVKNII DVNTs AN SSSR, 1976, vol. 69, pp. 3–41.

  43. Shinohara, H. and Hedenquist, J.W., Constraints on magma degassing beneath the far southeast porphyry Cu-Au deposit, Philippines, J. Petrol., 1997, vol. 38, pp. 1741–1752.

    Article  Google Scholar 

  44. Sillitoe, R.H., Styles of high-sulphidation gold, silver and copper mineralization in porphyry and epithermal environments, in Proc. International Congress on Earth Science, Exploration and Mining around the Pacific Rim (PACRIM'99), Bali, Indonesia, Melbourne: Australia: Inst. of Mining and Metallurgy, 1999, pp. 29–45.

  45. Sillitoe, R.H., Porphyry copper system, Econ. Geol., 2010, vol. 105, pp. 3–41.

    Article  Google Scholar 

  46. Sillitoe, R.H. and Mortensen, J.K., Longevity of porphyry copper formation at Quellaveco, Peru, Econ. Geol., 2010, vol. 105, pp. 1157–1162.

    Article  Google Scholar 

  47. Sillitoe, R.H., Hall, D.J., Redwood, S.D., and Waddell, A.H., Pueblo Viejo high-sulfidation epithermal gold-silver deposit, Dominican Republic: A new model of formation beneath barren limestone cover, Econ. Geol., 2006, vol. 101, pp. 1427–1435.

    Article  Google Scholar 

  48. Sillitoe, R.H., Tolman, J., and Kerkvoort, G.V., Geology of the Caspiche porphyry gold-copper deposit, Maricunga Belt, Northern Chile, Econ. Geol., 2013, vol. 108, pp. 585–604.

    Article  Google Scholar 

  49. Sotnikov, V.I., Kalinin, A.S., and Berzina, A.P., Genetic model copper–molybdenum formations, in Geneticheskie modeli endogennykh rudnykh formatsii (Genetic Models of Endogenous Ore Formations), Novosibirsk: Nauka, 1983, vol. 1, pp. 112–126.

  50. Sotnikov, V.I., Berzina, A.P., and Kalinin, A.S., Generalized genetic model of ore-magmatic systems of copper–molybdenum ore clusters, in Rudoobrazovanie i geneticheskie modeli endogennykh rudnykh formatsii (Ore Formation and Genetic Models of Endogenous Ore Formations), Novosibirsk: Nauka, 1988, pp. 232–240.

  51. Steininger, R.C., Geology of the Kitsault molybdenum deposit, British Columbia, Econ. Geol., 1985, vol. 80, pp. 57–71.

    Article  Google Scholar 

  52. Trufanov, V.N., Mineraloobrazuyushchie flyuidy rudnykh mestorozhdenii Bol’shogo Kavkaza (Mineral-Forming Fluids of Ore Deposits of the Greater Caucasus), Rostov-on-Don: Rostov. gos. univ., 1979.

  53. Vlasov, N.G., Dmitrenko, V.S., Kapanin, V.P., Kurnik, L.P., Lapshin, V.I., Malyshev, A.A., and Chugaev, A.E., The Amur gold ore province, in Zolotorudnye mestorozhdeniya Rossii (Gold Fields of Russia), Moscow: Akvarel’, 2010, pp. 187–212.

  54. Vol’fson, F.I. and Druzhinin, A.V., Glavneishie tipy rudnykh mestorozhdenii (Principal Types of Ore Deposits), Moscow: Nedra, 1975.

  55. Whitney, J.A., Vapor generation in a quartz monzonite magma: A synthetic model application to porphyry copper deposits, Econ. Geol., 1975, vol. 70, pp. 346–358.

    Article  Google Scholar 

  56. Wilkinson, J.J., Triggers for the formation of porphyry ore deposits in magmatic arcs, Nat. Geosci., 2013, no. 6, pp. 917–925.

  57. Zhatnuev, N.S., Mironov, A.G., Rychagov, S.N., and Gunin, V.I., Gidrotermal’nye sistemy s parovymi rezervuarami: Kontseptual’nye, eksperimental’nye i chislennye modeli (Hydrothermal Steam Reservoir Systems: Conceptual, Experimental, and Numerical Models), Novosibirsk: SO RAN, 1996.

  58. Zolotarev, V.G., Dynamics of the bulk formation of granite massifs and its significance in ore formation, Geokhimiya, 1983, no. 7, pp. 945–957.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. S. Ostapenko or O. N. Neroda.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostapenko, N.S., Neroda, O.N. On the Ore-Forming Role of Small Intrusions on the Shallow Deposits of Epithermal and Porphyre Types. Izv. Atmos. Ocean. Phys. 58, 1236–1253 (2022). https://doi.org/10.1134/S0001433822100073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822100073

Keywords:

Navigation