Skip to main content
Log in

Nature of the Crust in the Southern Part of the Bay of Bengal and the Adjacent Part of the Central Basin (Indian Ocean)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Based on the data of deep seismic sounding, which were obtained in 2003 on the R/V Mezen in the Bay of Bengal, two velocity sections have been constructed that characterize the structure of the crust in its southern part. Seismic studies have shown that, in the Bengal sector of the East Indian Ridge (EIR), a subcontinental type of crust is developed, the thickness of which reaches 19.5 km. At the western foot of the EIR, the velocity section is represented by a reduced transitional crust 13 km in thickness. Using the NGDS digitized database of the thickness of the sedimentary cover in the Indian Ocean, which is freely available on the Internet, a map of the depths of the acoustic basement is built which makes it possible to identify the morphological features of its structure. A seismostratigraphic analysis is carried out of the structure of the sedimentary cover that has developed (a) on horst blocks grouped at the foot of the western slope of the EIR, (b) on the crest of the EIR, and (c) in the adjacent part of the Central Basin. It is established that, in the Late Cretaceous–Paleogene, the Bengal sector of the EIR and horst blocks represented a single platform structure. In the latest phase of tectonic activation, which manifested itself in the late Miocene–Pliocene, the platform was divided into horst blocks, which experienced differentiated subsidence. It has been established that horst blocks play the main role in the structure of Ridge 85°. This ridge is not structurally unrelated to the Afanasy Nikitin Rise and, by its nature, is not a “tracer ridge.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. Altenbernd, T., Jokat, W., and Geissler, W., The bent prolongation of the 85°E ridge south of 5° N: Fact or fiction, Tectonophysics, 2020, vol. 785, pp. 1–12.

    Article  Google Scholar 

  2. Artyushkov, E.V. and Poselov, V.A., Formation of deep-water depressions in the Russian sector of the American–Asian basin due to eclogitization of the lower part of the continental crust, Dokl. Earth Sci., 2010, vol. 431, no. 5, pp. 502–506.

    Article  Google Scholar 

  3. Banerji, R.K., Cretaceous-eocene sedimentation, tectonism and biofacies in the Bengal Basin, India, Palaeogeogr. Palaeoclimatol. Palaeoecol., 1981, no. 34, pp. 57–85.

  4. Belousov, V.V. and Pavlenkova, N.I., The Earth crust types in Europe and North Atlantic, Geotektonika, 1998, no. 3, pp. 3–14.

  5. Blyuman, B.A., Weathering of basalts and unconformities in the ocean crust: Possible geodynamic implications, Reg. Geol. Metallog., 2008, no. 35, pp. 72–86.

  6. Borisova, A.Y., Belyatsky, B.V., Portnyagin, M.V., and Sushchevskaya, N.M., Petrogenesis of olivine-phyric basalts from the Aphanasey Nikitin Rise: Evidence for contamination by cratonic lower continental crust, J. Petrol., 2001, vol. 42, no. 2, pp. 277–319. https://doi.org/10.1093/petrology/42.2.277

    Article  Google Scholar 

  7. Borisova, A.Y., Bindeman, I.N., Toplis, M.J., Zagrtdenov, N., Guignard, J., Safonov, O., Melnik, O.E., and Marchelli, M., Zircon survival in shallow asthenosphere and deep lithosphere, Am. Mineral., 2020, vol. 105, no. 11, pp. 1662–1671.

    Article  Google Scholar 

  8. Brune, J.N. and Singh, D.D., Continent-like crustal thickness beneath the Bay Bengal sediments, Bull. Seismol. Soc. Am., 1986, vol. 76, no. 1, pp. 191–203.

    Google Scholar 

  9. Cowgill, E., Forte, A.M., Niemi, N., Avdeev, B., Tye, A., Trexler, C., Javakhishvili, Z., Elashvili, M., and Godoladze, T., Relict basin closure and crustal shortening budgets during continental collision: an example from Caucasus sediment provenance, Tectonics, 2016, vol. 35, no. 12, pp. 2918–2947.

    Article  Google Scholar 

  10. Curray, J.R., Geological history of the Bengal geosyncline, J. Assoc. Expl. Geophys., 1991, vol. 12, no. 4, pp. 209–219.

    Google Scholar 

  11. Curray, J.R. and Moore, D.G., Growth of the Bengal deep-sea fan and denudation in the Himalayas, Geol. Soc. Am. Bull., 1971, vol. 82, pp. 563–572.

    Article  Google Scholar 

  12. Curray, J.R., Emmel, F.J., Moore, D.G., and Raitt, R.W., Structure, tectonics, and geological history of northeastern Indian Ocean, in The Oceans Basins and Margins, vol. 6: Indian Ocean, Nairn, A.E.M. and Stehly, G.E., Eds., New York: Plenum Press, 1982, pp. 399–450.

  13. Curray, J.R., Emmel, F.J., and Moore, D.G., The Bengal Fan: Morphology, geometry, stratigraphy, history and processes, Mar. Petrol. Geol., 2003, vol. 19, pp. 1191–1223.

    Article  Google Scholar 

  14. Desa, M.A. and Ramana, M.V., Integrated analysis of magnetic, gravity and multichannel seismic reflection data along a transect southeast of Sri Lanka, Bay of Bengal: New constraints, Mar. Geol., 2021, vol. 438, pp. 1–15.

    Article  Google Scholar 

  15. Divins, D.L., Total sediment thickness of the world’s oceans and marginal seas, Boulder Colo.: NOAA National Geophysical Data Center, 2003.

    Google Scholar 

  16. Dotduev, S.I., On the overlapped structure of Greater Caucasus, Geotektonika, 1986, no. 5, pp. 94–106.

  17. Dreiling, J., Tilmann, F., Yuan, X., Haberland, C., and Mahinda Seneviratne, S.W., Crustal structure of Sri Lanka derived from joint inversion of surface wave dispersion and receiver functions using a Bayesian approach, J. Geophys. Res., 2020, vol. 125, pp. 1–15.

    Article  Google Scholar 

  18. Dupré, B. and Allègre, C., Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena, Nature, 1983, vol. 303, pp. 142–146. https://doi.org/10.1038/303142a0

    Article  Google Scholar 

  19. France-Lanord, C., Spiess, V., Klaus, A., et al., Expedition 354 methods, in Proc. of the Int. Ocean Discovery Program, Bengal Fan, 2016, vol. 354, pp. 1–29.

  20. Frolova, T.N. and Burikova, I.A., Magmaticheskie formatsii sovremennykh geotektonicheskikh obstanovok (Magmatic Formations of Contemporary Geotectonic Environments), Moscow: MGU, 1997.

  21. Ganzha, O.Yu. and Neprochnov, Yu.P., A method for the estimation of seismic parameters and inhomogeneities of the oceanic crust, Oceanology (Engl. Transl.), 2001, vol. 41, no. 5, pp. 753–757.

  22. Hart, S., A large-scale isotope anomaly in the southern hemisphere mantle, Nature, 1984, vol. 309, pp. 753–757. https://doi.org/10.1038/309753a0

    Article  Google Scholar 

  23. Homrighausen, S., Hoernle, K., Wartho, J.-A., Hauff, F., and Werner, R., Do the 85° E Ridge and Conrad Rise form a hotspot track crossing the Indian Ocean?, Lithos, 2021, vols. 398–399. https://doi.org/10.1016/j.lithos.2021.106234

  24. Il’inskii, D.A., Ginzburg, A.A., Voronin, V.V., Ganzha, O.Yu., Manukin, A.B., and Roginskii, K.A., Creation of new-generation digital bottom seismic stations: Current state and a look into the future, Geoekol. Inzh. Geol. Gidrogeol. Geokriol., 2019, no. 2, pp. 87–101. https://doi.org/10.31857/S0869-78092019287-101

  25. Illarionov, V.K., Boiko, A.N., and Udintsev, G.B., The ocean floor morphostructure of the Bay of Bengal (Indian Ocean) and the problem of its origin, Izv., Phys. Solid Earth, 2016, vol. 52, no. 3, pp. 382–398.

    Article  Google Scholar 

  26. Illarionov, V.K., Boiko, A.N., and Borisova, A.Yu., A new model of the Ninety East Ridge formation, Indian Ocean, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 11, pp. 1787–1802. https://doi.org/10.1134/S0001433819110203

    Article  Google Scholar 

  27. Illarionov, V.K., Boiko, A.N., Borisova, A.Yu., and Ilyinsky, D.A., Nature of the Kergelen Plateau and its place in the structural plan of the southern sector of the Indian Ocean, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 10, pp. 1322–1348. https://doi.org/10.1134/S0001433821100054

    Article  Google Scholar 

  28. Kashubin, S.N., Pavlenkova, N.I., Petrov, O.V., Mil’shtein, E.D., Shokal’skii, S.P., and Erinchek, Yu.M., Earth crust types of the circumpolar Arctic, Reg. Geol. Metallog., 2013, no. 55, pp. 5–20.

  29. Kashubin, S.N., Petrov, O.V., Mil’shtein, E.D., Androsov, E.A., Vinokurov, I.Yu., and Shokal’skii, S.P., Earth crust types of Central and Northeast Asia, Far East and Arctic regions of continent–ocean transition, Reg. Geol. Metallog., 2018, no. 73, pp. 6–18.

  30. Krishna, K.S., Bull, J.M., and Scrutton, R.A., Evidence for multiphase folding of the central Indian Ocean lithosphere, Geology, 2001, vol. 29, pp. 715–718.

    Article  Google Scholar 

  31. Liu, C.-S., Sandwell, D.T., and Curray, J.R., The negative gravity field over the 85° E ridge, J. Geophys. Res., 1982, vol. 87, no. B9, pp. 7673–7686.

    Article  Google Scholar 

  32. Lomakin, I.E., Terraces of seamounts and some issues of bottom tectonics of the Indian Ocean, Geol. Polezn. Iskop. Mirovogo Okeana, 2011, no. 2, pp. 42–54.

  33. Mahoney, J.J., White, W.M., Upton, B.G.J., Neal, C.R., and Scrutton, R.A., Beyond EM-1: Lavas from Afanasy Nikitin Rise and the Crozet Archipelago, Indian Ocean, Geology, 1996, vol. 24, no. 7, pp. 615–618.

    Article  Google Scholar 

  34. Naini, B.R. and Leyden, R., Ganges cone: A wide angle seismic reflection and refraction study, J. Geophys. Res., 1973, vol. 78, no. 35, pp. 8711–8720.

    Article  Google Scholar 

  35. Neprochnov, Yu.P., Ganzha, O.Yu., and Ilin, I.A., Methods for processing and interpretation of bottom seismograph records of deep seismic sounding in the ocean, Oceanology (Engl. Transl.), 2005, vol. 45, no. 3, pp. 431–440.

  36. Ningthoujam, L.S., Pandey, D.K., Nair, N., Yadav, R., Khogenkumar, Sh., Negi, S.S., and Kumar, A., Plume–ridge interactions in the Central Indian Ocean Basin: Insights from new wide-angle seismic and potential field modelling, Tectonophysics, 2022, vol. 824, pp. 1–16.

    Article  Google Scholar 

  37. Ollier, C.D. and Pain, C.F., Neotectonic mountain uplift and geomorphology, Geomorfologiya, 2019, no. 4, pp. 3–26.

  38. Paul, D.D. and Lian, K.M., Offshore tertiary basins of South-East Asia, Bay of Bengal to South China Sea, in Proc. of the World Petroleum Congress, Tokyo, 1975, vol. 3, pp. 107–121.

  39. Pavlenkova, N.I., The structure of the Earth crust and upper mantle and global tectonics, in Spornye aspekty tektoniki plit i vozmozhnye al’ternativy (Controversial Aspects of Plate Tectonics and Possible Alternatives), Sholpo, V.N., Ed., Moscow: OIFZ RAN, 2002, pp. 64–83.

  40. Pavlenkova, N.I., The structure of the Earth crust and upper mantle according to seismic data, in Stroenie i dinamika litosfery Vostochnoi Evropy: Rezul’taty issledovanii po programme EUROPROBE (The Structure and Dynamics of the East Europe lithosphere: Results of EUROPROBE Studies), Morozov, A.F., Mezhelovskii, N.V., Pavlenkov, N.I., Eds., Moscow: GEOS, 2006, vol. 2, pp. 559–599.

  41. Popov, A.A., Seismic models and the structure of the Earth crust of the northeastern Indian Ocean, Cand. Sci. (Geol.-Mineral.) Dissertation, Yuzhno-Sakhalinsk: Institute of Marine Geology and Geophysics, Far Eastern Scientific Center, Russian Academy of Science, 1986.

  42. Popov, A.A., Popov, A.A., Jr., Petrov, A.V., and Kiktev, Yu.V., Seismic models of the northern part of the east-Indian Ridge and adjacent depressions, Okeanologiya, 1985, vol. 25, no. 6, pp. 983–992.

    Google Scholar 

  43. Radhakrishna, M., Subrahmanyam, C., and Damodharan, T., Thin oceanic crust below Bay of Bengal inferred from 3D-gravity interpretation, Tectonophysics, 2010, vol. 493, pp. 93–105.

    Article  Google Scholar 

  44. Rao, D.G. and Krishna, K.S., Crustal evolution and sedimentation history of the Bay of Bengal since the Cretaceous, J. Geophys. Res., 1997, vol. 102, no. B8, pp. 17747–17768.

    Article  Google Scholar 

  45. Rao, G.S., Radhakrishna, M., Sreejith, K.M., Krishna, K.S., and Bull, J.M., Lithosphere structure and upper mantle characteristics below the Bay of Bengal, Geophys. J. Int., 2016, vol. 206, pp. 675–695.

    Article  Google Scholar 

  46. Rao, V.V. and Nara, D., Constraints on the lithospheric structure and tectonics of Archean Dharwar Craton, Southern India, from geophysical and geological data: Evidence for modified lithosphere, Geosyst. Geoenviron., 2022, pp. 1–72.

    Google Scholar 

  47. Reverdatto, V.V., Eremeev, V.V., Il’ichev, A.Ya., Popov, A.A., Sychev, P.M., and Sharapov, V.N., Discovery of rhyolites and trachytes and the geological situation in the northern part of the underwater East Indian Ridge, Dokl. Akad. Nauk SSSR, 1985, vol. 280, no. 4, pp. 960–963.

    Google Scholar 

  48. Rudich, E.M., Dvizhushchiesya materiki i evolyutsiya okeanicheskogo lozha (Moving Continents and Evolution of the Ocean Bed), Moscow: Nedra, 1983.

  49. Rudich, E.M., Shallow-water facies of the World Ocean, in Okeanizatsiya Zemli – al’ternativa neomobilizma (The Earth’s Oceanization as an Alternative to Neomobilism) Kaliningrad: KGU, 2004, pp. 218–234.

  50. Sandwell, D.T. and Smith, W.H.F., Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate, J. Geophys. Res.: Solid Earth, 2009, vol. 114, pp. 1–18. https://doi.org/10.1029/2008JB006008

    Article  Google Scholar 

  51. Seismorazvedka: Sprav. geofizika (Seismic Exploration: Handbook of Geophysics), Nomokonov, V.P., Ed., Moscow: Nedra, 1990.

    Google Scholar 

  52. Singh, S.C., Hananto, N., Mukti, M., Robinson, D.P., Das, Sh., Chauhan, A., Carton, H., Gratacos, B., Midnet, S., Djajadihardja, Yu., and Harjono, H., Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra, Nat. Geosci. Lett., 2011, vol. 4, pp. 308–311.

    Article  Google Scholar 

  53. Srinivas, K., Krishna, K.S., Ismaiel, M., Mishra, J., and Saha, D., An island chain lost in the Bay of Bengal, Curr. Sci., 2017, vol. 112, no. 1096, pp. 1095–1096.

    Google Scholar 

  54. Sushchevskaya, N.M., Levchenko, O.V., and Belyatsky, B.V., To the question of magmatism and origin of the Afanasy Nikitin Rise due to discovery of ancient zircon by three billion years age, Oceanology (Engl. Transl.), 2022, vol. 62, no. 1, pp. 114–126.

  55. Sychev, P.M., Vorob’ev, V.M., Lyutaya, L.M., Patrikeev, V.K., Popov, A.A., Reverdatto, V.V., and Soinov, V.V., Tectonics and magmatism of the southwestern Bay of Bengal (Indian Ocean), in Litosfera i astenosfera kontinentov i okeanov (Lithosphere and Asthenosphere of Continents and Oceans), Novosibirsk: Nauka, 1985, pp. 38–52.

  56. Sychev, P.M., Vorob’ev, V.M., Lyutaya, L.M., Patrikeev, V.K., Popov, A.A., Reverdatto, V.V., and Soinov, V.V., Folded deformations of the sedimentary cover of the southwestern Bay of Bengal, Tikhookean. Geol., 1987, no. 1, pp. 25–36.

  57. The Expedition SO258/2 of the Research Vessel Sonne to the Central Indian Ocean in 2017, Geissler, W., Ed., Bremerhaven, 2017.

    Google Scholar 

  58. Udintsev, G.B., Regional’naya geomorfologiya dna okeanov: Indiiskii okean (Regional Geomorphology of Ocean Bottoms: Indian Ocean), Moscow: Nauka, 1989.

  59. Verzhbitskii, E.V., Study of the heat flux in the Central depression of the Indian Ocean, Okeanologiya, 1991, vol. 31, no. 5, pp. 792–798.

    Google Scholar 

  60. Yakovlev, F.L., Building a balanced structure of the eastern part of the Alpine Greater Caucasus according to quantitative studies of linear folding, Vestn. Kamchatskoi Reg. Assots. Uchebno-Nauchnyi Tsentr, Nauki Zemle, 2012a, no. 1, pp. 191–214.

  61. Yakovlev, F.L., Methods for detecting formation mechanisms and determining a final strain value for different scales of folded structures, C. R. Geosci., 2012b, vol. 344, nos. 3–4, pp. 125–137.

    Article  Google Scholar 

  62. Yakovlev, F.L., Multi-rank deformation analysis of linear folding on the example of the Alpine Greater Caucasus, Doctoral (Geol.-Mineral.) Dissertation, Moscow: Institute of Physics of the Earth, Russian Academy of Sciences, 2015.

  63. Yakovlev, F.L. and Gorbatov, E.S., The use of factor analysis to study the geodynamic processes of the formation of the Greater Caucasus, Geodin. Tektonofiz., 2018, vol. 9, no. 3, pp. 909–926.

    Article  Google Scholar 

  64. Yano, T., Vasilev, B.I., Choi Dong, R., Miyagi, S., Gavrilov, A.A., and Adachi, H., Continental rocks in the Indian Ocean, New Concepts Global Tecton. Newsl., 2011, no. 58, pp. 9–28.

Download references

ACKNOWLEDGMENTS

For the opportunity to get acquainted with the primary geological and geophysical material, we are deeply grateful to I.N. Ponomareva (PGO Yuzhmorgeologiya, Gelendzhik) and A.P. Cherednichenko (Odessa Mechnikov National University, Ukraine).

We thank N.I. Pavlenkova and F.L. Yakovlev (Schmidt Institute of Physics of the Earth, Russian Academy of Sciences), as well as Doctor of Geological and Mineralogical Sciences E.A. Dolginov for valuable advice in discussing the issues raised in the article.

Funding

This work was supported by the state order of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, subject no. FMWU-2022-0010 and State Task of the Shirshov Institute of Oceanology, Russian Academy of Sciences, subject no. FMWE-2021-0011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. K. Illarionov, O. Yu. Ganzha, D. A. Ilyinsky, V. Yu. Burmin, A. N. Boyko, K. A. Roginskiy or A. Yu. Borisova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illarionov, V.K., Ganzha, O.Y., Ilyinsky, D.A. et al. Nature of the Crust in the Southern Part of the Bay of Bengal and the Adjacent Part of the Central Basin (Indian Ocean). Izv. Atmos. Ocean. Phys. 58, 1289–1311 (2022). https://doi.org/10.1134/S0001433822100048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822100048

Keywords:

Navigation