Skip to main content
Log in

Lithospheric Magnetic Anomalies over Large Igneous Province Territories

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The spatial distribution of the satellite lithospheric magnetic field is analyzed as a parameter associated with plume magmatism processes that occurred on the territories of large igneous magmatic provinces (LIPs). We consider the lithospheric geomagnetic field at an altitude of ~250–300 km derived from the CHAMP satellite data for three LIPs of different ages: Central European, North Atlantic, and Siberian. The results are evidence that the parameters of the lithospheric geomagnetic field are controlled by complex magmatic processes. Ancient mantle plumes are reflected in the lithospheric magnetic field as conformal positive anomalies of large magnitudes, while the lithospheric magnetic field on the territory of the young North Atlantic province is significantly reduced. Therefore, the data from geomagnetic satellite surveys add valuable information to the available geological and geophysical data and should be used holistically for studying the crustal heterogeneity of LIPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Abramova, D.Yu. and Abramova, L.M., Lithospheric magnetic anomalies in the territory of Siberia (from measurements by the CHAMP satellite), Russ. Geol. Geophys., 2014, vol. 55, pp. 854–863.

    Article  Google Scholar 

  2. Abramova, D.Yu., Filippov, S.V., and Abramova, L.M., Longwave magnetic anomalies in Russia from Champ satellite measurements, Geofiz. Issled., 2009, vol. 10, no. 2, pp. 48–63.

    Google Scholar 

  3. Abramova, D.Yu., Abramova, L.M., Filippov, S.V., and Frunze, A.Kh., On the prospects of satellite measurements for the analysis of regional magnetic anomalies, Issled. Zemli Kosmosa, 2011, no. 6, pp. 53–63.

  4. Abramova, D.Yu., Abramova, L.M., Varentsov, Iv.M., and Filippov, S.V., The role of satellite lithospheric magnetic anomalies in the analysis of geological and geophysical data in the Central Asian collision zone, in Problemy geodinamiki i geoekologii vnutrikontinental’nykh orogenov: Materialy VI Mezhdunar. simp. (Problems in Geodynamics and Geoecology of Intracontinental Orogens: Proceedings of the VI International Symposium), Bishkek: NS RAN, 2015, pp. 45–54.

  5. Abramova, D.Yu., Filippov, S.V., Abramova, L.M., Varentsov, I.M., and Lozovskii, I.N., Changes of lithospheric magnetic anomalies with altitude (according to the CHAMP satellite), Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 2, pp. 239–248. https://doi.org/10.1134/S001679321602002X

  6. Abramova, D.Yu., Abramova, L.M., Varentsov, I.M., and Filippov, S.V., Study of lithospheric magnetic anomalies of the Greenland–Iceland–Faroe Volcanic Complex from CHAMP satellite data, Geofiz. Issled., 2019, vol. 20, no. 2, pp. 5–18. https://doi.org/10.21455/gr2019.2-1

    Article  Google Scholar 

  7. Abramova D.Yu., Abramova L.M., Varentsov I.M., Filippov S.V., Reflection of large tectonic structures of the eastern part of the Arctic Ocean in the lithospheric magnetic field, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 5, pp. 636–643. https://doi.org/10.1134/S0016793220050023

  8. Allen, R., Nolet, G., Morgan, W., Vogfjord, K., Nettles, M., Ekstrom, G., Bergsson, B., Erlendsson, P., Foulger, G., Jakobsdottir, S., Julian, B., Pritchard, M., Ragnarsson, S., and Stefansson, R., Plume-driven plumbing and crustal formation in Iceland, J. Geophys. Res.: Solid Earth, 2002, vol. 107, no. B8. https://doi.org/ 1JB000584.https://doi.org/10.1029/200

  9. Augland, L.E., Ryabov, V.V., Vernikovsky, V.A., Planke, S., Polozov, A.G., Callegaro, S., Jerram, D.A., and Svensen, H.H., The main pulse of the Siberian traps expanded in size and composition, Sci. Rep., 2019, vol. 9, 18723. https://doi.org/10.1038/s41598-019-54023-2

    Article  Google Scholar 

  10. Bijwaard, H. and Spakman, W., Tomographic evidence for a whole-mantle plume below Iceland, Earth Planet. Sci. Lett., 1999, vol. 166, pp. 121–126. https://doi.org/10.1016/S0012-821X(99)00004-7

    Article  Google Scholar 

  11. Bogdanova, S.V., Gorbatschev, R., and Garetsky, R.G., EUROPE: East European Craton, in Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2016, pp. 34–51. https://doi.org/10.1016/B978-0-12-409548-9.10020-X.

  12. Borisenko, A.C., Sotnikov, V.I., Izokh, A.E., Polyakov, G.V., and Obolenskii, A.A., Permo-Triassic mineralization in Asia and its relation to plume magmatism, Russ. Geol. Geophys., 2006, vol. 47, no. 1, pp. 170–186.

    Google Scholar 

  13. Cherepanova, Yu., Artemieva, I.M., Thybo, H., and Chem-ia, Z., Crustal structure of the Siberian craton and the West Siberian basin: An appraisal of existing seismic data, Tectonophysics, 2013, vol. 609, pp. 154–183. https://doi.org/10.1016/j.tecto.2013.05.004

    Article  Google Scholar 

  14. Coffin, M.F. and Eldholm, O., Large igneous provinces: Crustal structure, dimensions, and external consequences, Rev. Geophys., 1994, vol. 32, no. 1, pp. 1–36. https://doi.org/10.1029/93RG02508

    Article  Google Scholar 

  15. Darbyshire, F.A., White, R.S., and Priestley, K.F., Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study, Earth Planet. Sci. Lett., 2000, vol. 181, pp. 409–428. https://doi.org/10.31857/S0016794020050028

    Article  Google Scholar 

  16. Dobretsov, N.L., Geological implications of the thermochemical plume model, Russ. Geol. Geophys., 2008, vol. 49, no. 7, pp. 441–454.

    Article  Google Scholar 

  17. Dobretsov, N.L., Borisenko, A.S., Izokh, A.E., and Zhm-odik, S.M., A Thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal ore deposits, Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 903–924.

    Article  Google Scholar 

  18. Dobretsov, N.L., Polyanskii, O.P., Reverdatto, V.V., and Babichev, A.V., Dynamics of the Arctic and adjacent petroleum basins: A record of plume and rifting activity, Russ. Geol. Geophys., 2013, vol. 54, no. 8, pp. 888–902.

    Article  Google Scholar 

  19. Dorofeeva, R.P., Lysak, S.V., and Duchkov, A.D., Terrestrial heat flow in Siberia and Mongolia, in Terrestrial Heat Flow and Geothermal Energy in Asia, Gupta, M.L., Ed., New Delhi: Oxford & IBH, 1995, pp. 251–279.

    Google Scholar 

  20. Døssing, A., Jackson, H.R., Matzka, J., Einarsson, I., Rasmussen, T.M., Olesen, A.V., and Brozena, J.M., On the origin of the Amerasia Basin and the High Arctic Large Igneous Province: Results of new aeromagnetic data, Earth Planet. Sci. Lett., 2013, vol. 363, pp. 219–230. https://doi.org/10.1016/j.epsl.2012.12.013

    Article  Google Scholar 

  21. Ernst, R.E., Dickson, A., and Bekker, A., Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, AGU, 2021.

    Book  Google Scholar 

  22. Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J., and Gogineni, P., High geothermal heat flow, basal melt, and origin of rapid ice flow in Central Greenland, Science, 2001, vol. 294, no. 5550, pp. 2338–2342. https://doi.org/10.1126/science.1065370

    Article  Google Scholar 

  23. Foulger, G.R., Doré, T., Emeleus, C.H., Franke, D., Geoffroy, L., Gernigon, L., Hey, R., Holdsworth, R.E., Hole, M., Hoskuldsson, A., Julian, B., Kusznir, N., Martinez, F., McCaffrey, K.W.G., Natland, et al., The Iceland microcontinent and a continental Greenland–Iceland–Faroe ridge, Earth Sci. Rev., 2020, vol. 206, 102926. https://doi.org/10.1016/j.earscirev.2019.102926

    Article  Google Scholar 

  24. Funck, T. and Hopper, J.R., Crustal structure, in Tectonostratigraphic Atlas of the North-East Atlantic Region, Copenhagen: Geological Survey of Denmark and Greenland (GEUS), 2014, pp. 69–128.

  25. Göǧüș, O.H., Geodynamic experiments suggest that mantle plume caused Late Permian Emeishan Large Igneous Province in Southern China, Int. Geol. Rev., 2020, pp. 375–389. https://doi.org/10.1080/00206814.2020.1855602

  26. Golovkov, V.P., Zvereva, T.I., and Chernova, T.A., Space–time modeling of the main magnetic field by combined methods of spherical harmonic analysis and natural orthogonal components, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 2, pp. 256–262.

  27. Golovkov, V.P., Zvereva, T.I., and Chernova, T.A., Construction of the spatial–temporal model of the main geomagnetic field using satellite data, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 1, pp. 133–141.

  28. Hemant, K., Maus, S., and Haak, V., Interpretation of champ crustal field anomaly maps using a geographical information system (GIS) technique, in Earth Observation with CHAMP: Results from Three Years in Orbit, 2005, pp. 249–254. https://doi.org/10.1007/3-540-26800-6.

  29. Henriksen, N., Higgins, A.K., Kalsbeek, F., and Pulvertaft, T.C.R., Greenland from Archaean to Quaternary: Descriptive text to the Geological map of Greenland, 1:2 500 000, Copenhagen: Geological Survey of Denmark and Greenland (GEUS), 2000. https://doi.org/10.34194/ggub.v185.5197

  30. Hjartarson, A., Erlendsson, O., and Blisghke, A., The Greenland–Iceland–Faroe Ridge Complex, London: Geol. Soc. London, 2017. https://doi.org/10.1144/SP447.14.

  31. Horni, J.A., Hopper, J.R., Blischke, A., Geisler, W.H., Stewart, M., McDermott, K., Judge, M., Erlendsson, O., and Arting, U., Regional distribution of volcanism within the North Atlantic Igneous Province, in The NE Atlantic region: A Reappraisal of Crustal Structure, Tectonostratigraphy and Magmatic Evolution, Perron-Pinvidic, J., Hopper, J.R., Stoker, M.S., Gaina, C., Doornenbal, J.C., Funk, T., and Arting, U., Eds., London: Geol. Soc. London, 2017, pp. 105–125. https://doi.org/10.1144/SP447.18.

  32. Larsen, L.M. and Watt, W.S., Episodic volcanism during break-up of the North Atlantic: Evidence from the East Greenland plateau basalts, Earth Planet. Sci. Lett., 1985, vol. 73, pp. 105–116. https://doi.org/10.1016/0012-821X(85)90038-X

    Article  Google Scholar 

  33. Lebedev, S., Schaeffer, A.J., Fullea, J., and Pease, V., Seismic tomography of the Arctic region: Inferences for the thermal structure and evolution of the lithosphere, in Circum-Arctic Lithosphere Evolution, London: Geol. Soc. London, 2017, pp. 419–440. https://doi.org/10.1144/SP460.19.

  34. Morgan, W.J., Convection plumes in the lower mantle, Nature, 1971, vol. 230, pp. 42–43. https://doi.org/10.1038/230042a0

    Article  Google Scholar 

  35. Pirajno, F., Ore Deposits and Mantle Plumes, Kluwer, 2004.

    Google Scholar 

  36. Reigber, C., Lühr, H., and Schwintzer, P., CHAMP mission status, Adv. Space Res., 2002, vol. 30, no. 2, pp. 129–134. https://doi.org/10.1016/S0273-1177(02)00276-4

    Article  Google Scholar 

  37. Rickers, F., Fichtne, A., and Trampert, J., The Iceland–JanMayen plume system and its impact on mantle dynamics in the North Atlantic region: Evidence from full-waveform inversion, Earth Planet. Sci. Lett., 2013, vol. 367, pp. 39–51. https://doi.org/10.1016/j.epsl.2013.02.022

    Article  Google Scholar 

  38. Saunders, A.D., Fitton, J.G., Ker, A.C., Norry, M.J., and Kent, R.W., The North Atlantic igneous province, in Large Igneous Provinces, Mahoney, J.J. and Coffin, M.F., Eds., New York: Am. Geophys. Union, 1997, pp. 45–93. https://doi.org/10.1029/GM100p0045.

  39. Seredkina, A., S-wave velocity structure of the upper mantle beneath the Arctic region from Rayleigh wave dispersion data, Phys. Earth Planet. Int., 2019, vol. 290, pp. 76–86. https://doi.org/10.1016/j.pepi.2019.03.007

    Article  Google Scholar 

  40. Søager, N. and Holm, P.M., Extended correlation of the Paleogene Faroe Islands and East Greenland plateau basalts, Lithos, 2009, vol. 107, pp. 205–215. https://doi.org/10.1016/j.lithos.2008.10.002

    Article  Google Scholar 

  41. Toyokuni, G., Matsuno, T., and Zhao, D., P wave tomography beneath Greenland and surrounding regions. 1. Crust and upper mantle, J. Geophys. Res.: Solid Earth, 2020, vol. 125, e2020JB019837. https://doi.org/10.1029/2020JB019837

  42. Wessel, P. and Smith, W.H.F., The generic mapping tools (GMT), Technical reference and cookbook version 4.2, 2007. http://gmt.soest.hawaii.edu.

  43. White, R. and McKenzie, D., Magmatism at rift zones: The generation of volcanic continental margins and flood basalts, J. Geophys. Res., 1989, vol. 94, pp. 7685–7729. https://doi.org/10.1029/JB094iB06p07685

    Article  Google Scholar 

  44. Yakovlev, A.V., Bushenkova, N.A., Kulakov, I.Yu., and Dobretsov, N.L., The structure of the upper mantle of the Arctic region according to regional seismic tomography data, Geol. Geofiz., 2012, vol. 53, no. 11, pp. 1261–1272.

    Google Scholar 

  45. Yarmolyuk, V.V., Kovalenko, V.I., and Kuz’min, M.I., North Asian superplume activity in the Phanerozoic: Magmatism and deep geodynamics, Geotectonics, 2000, vol. 34, no. 5, pp. 343–366.

    Google Scholar 

Download references

Funding

This work was supported by the State Tasks of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, and the Geoelectromagnetic Research Center of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Yu. Abramova, S. V. Filippov, L. M. Abramova or I. M. Varentsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramova, D.Y., Filippov, S.V., Abramova, L.M. et al. Lithospheric Magnetic Anomalies over Large Igneous Province Territories. Izv. Atmos. Ocean. Phys. 58, 1208–1217 (2022). https://doi.org/10.1134/S0001433822100012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822100012

Keywords:

Navigation