Skip to main content
Log in

Influence of Natural and Climatic Conditions on the Values of the Vertical Turbulent Diffusion Coefficient for Long Observation Periods

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The convection–diffusion transport equation (K-theory) is widely used as a mathematical basis for modeling the dispersion of pollutants in the atmospheric air. One important parameter of this model is the vertical component of the turbulent diffusion coefficient, which describes the vertical transport of fine particles. Existing models of vertical diffusion are developed for short observation periods, during which the state of the atmosphere can be considered stationary. The effect of small concentrations of fine particles on the human body is manifested during prolonged exposure. For this reason, modeling of dispersion curves averaged over long time intervals is of primary interest. This article presents the results of estimates of vertical diffusion coefficients for observation periods of 2, 8, and 11 months. The results are obtained using a semiempirical method based on a regression analysis of the measured horizontal profiles of the level of pollution of the surface layer of the atmosphere by emissions of large enterprises: a thermal power plant and an aluminum plant. The method of active biomonitoring at the height of 1–2 m is used to measure the profiles. The results are analyzed depending on the average wind speed and the degree of heterogeneity of the surface of the investigated territories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. Hofmann, “Modelling inhaled particle deposition in the human lung: A review,” J. Aerosol Sci. 42 (10), 693–724 (2011).

    Article  Google Scholar 

  2. P. Luo, L.-J. Bao, Y. Guo, et al., “Size-dependent atmospheric deposition and inhalation exposure of particle-bound organophosphate flame retardants,” J. Hazard. Mater. 301, 504–511 (2016).

    Article  Google Scholar 

  3. R. Sturm, “Modeling the deposition of bioaerosols with variable size and shape in the human respiratory tract: A review,” J. Adv. Res. 3 (4), 295–304 (2012).

    Article  Google Scholar 

  4. P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, and D. J. Sutton, “Heavy Metal Toxicity and the Environment,” in Molecular, Clinical and Environmental Toxicology (2012), pp. 133–164.

  5. World Health Organization. Review of Evidence on Health Aspects of Air Pollution–REVIHAAP Project Technical Report (World Health Organization, 2013).

  6. I. V. Mudryi and T. K. Korolenko, Heavy Metals in the Environment and Their Effect on the Human Body (Vrachebnoe Delo, 2002), pp. 32–37 [in Russian].

  7. A. Mandel, et al., “Setting threshold values of particle sizes for determination of the appropriate dispersion/deposition model during various atmospheric stability conditions,” Atmos. Environ. 105, 181–190 (2015).

    Article  Google Scholar 

  8. M. Viana, I. Rivas, X. Querol, et al., “Partitioning of trace elements and metals between quasi-ultrafine, accumulation and coarse aerosols in indoor and outdoor air in schools,” Atmos. Environ. 106, 392–401(2015).

    Article  Google Scholar 

  9. M. Chamecki, “An analytical model for dispersion of biological particles emitted from area sources: inclusion of dispersion in the crosswind direction,” Agric. For. Meteorol. 157, 30–38 (2012).

    Article  Google Scholar 

  10. Y. Zhang, R. Hu, and X. Zheng, “Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study,” Phys. Fluids 30 (4), 046601 (2018).

    Article  Google Scholar 

  11. D. M. Moreira, A. C. Moraes, A. G. Goulard, et al., “A contribution to solve the atmospheric diffusion equation with eddy diffusivity depending on source distance,” Atmos. Environ. 83, 254–259 (2014).

    Article  Google Scholar 

  12. M. E. Berlyand, Prediction and Regulation of Air Pollution (Gidrometeoizdat, Leningrad, 1985) [in Russian].

    Google Scholar 

  13. D. L. Laikhtman, Physics of Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad,1970) [in Russian].

    Google Scholar 

  14. G. N. Panin and Ch. Bernhofer, “Parametrization of turbulent fluxes over inhomogeneous landscapes,” Izv., Atmos. Ocean. Phys. 44 (6) 701–716 (2008).

    Article  Google Scholar 

  15. N. K. Ryzhakova, A. L. Borisenko, and V. O. Babicheva, “Use of moss biomonitors for turbulent transport coefficient estimation for industrial emissions,” Atmos. Pollut. Res. 8 (5), 997–1004 (2017).

    Article  Google Scholar 

  16. M. Dlugosz-Lisiecka and J. Wróbel, “Use of moss and lichen species to identify 210Po-contaminated regions,” Environ. Sci.: Processes Impacts 16 (12), 2729–2733. (2014).

    Google Scholar 

  17. O. Motyka, I. Pavlíková, J. Bitta, et al., “Moss biomonitoring and air pollution modelling on a regional scale: Delayed reflection of industrial pollution in moss in a heavily polluted region?,” Environ. Sci. Pollut. Res. 27 (26), 569–578 (2020).

    Article  Google Scholar 

  18. M. Aničić Urošević, G. Vuković, P. Jovanović, et al., “Urban background of air pollution: Evaluation through moss bag biomonitoring of trace elements in botanical garden,” Urban For. Urban Greening 25, 10–19 (2017).

    Article  Google Scholar 

  19. G. Gecheva, “Atmospheric pollution assessment with mosses in Bulgaria,” J. BioSci. Biotechnol. 5 (2), 125–128 (2016).

    Google Scholar 

  20. X. Zhou, Q. Chen, C. Liu, et al., “Using moss to assess airborne heavy metal pollution in Taizhou, China,” Int. J. Environ. Res. Public Health 14 (4), 430 (2017).

    Article  Google Scholar 

  21. N. Bajraktari, I. Morina, and S. Demaku, “Assessing the presence of heavy metals in the area of Glloogoc (Kosovo) by using mosses as a bioindicator for heavy metals,” J. Ecol. Eng. 20 (6), 135–140 (2019).

    Article  Google Scholar 

  22. B. Godzik, “Use of bioindication methods in national, regional and local monitoring in Poland—Changes in the air pollution level over several decades,” Atmosphere 11 (2), 143 (2020).

    Article  Google Scholar 

  23. L. Barandovski, T. Stafilov, R. Šajn, et al., “Atmospheric heavy metal deposition in North Macedonia from 2002 to 2010 studied by moss biomonitoring technique,” Atmosphere 11 (9), 929 (2020).

    Article  Google Scholar 

  24. P. Kapusta and B. Godzik, “Temporal and cross-regional variability in the level of air pollution in Poland: A study using moss as a bioindicator,” Atmosphere 11 (2), 157 (2020).

    Article  Google Scholar 

  25. M. M. Derrien, Ch. Zuidema, S. Jovan, et al., “Toward environmental justice in civic science: Youth performance and experience measuring air pollution using moss as a bio-indicator in industrial-adjacent neighborhoods,” Int. J. Environ. Res. Public Health 17 (19), 72–78 (2020).

    Article  Google Scholar 

  26. A. Svozilíková Krakovská, V. Svozilík, I. Zinicovscaia, et al., “Analysis of spatial data from moss biomonitoring in Czech–Polish border,” Atmosphere 11 (11), 1237 (2020).

    Article  Google Scholar 

  27. T. Stafilov, L. Barandovski, R. Šajn, et al., “Atmospheric mercury deposition in Macedonia from 2002 to 2015 determined using the moss biomonitoring technique,” Atmosphere 11 (12), 1379 (2020).

    Article  Google Scholar 

  28. C. Betsou, E. Diapouli, E. Tsakiri, et al., “First-time source apportionment analysis of deposited particulate matter from a moss biomonitoring study in Northern Greece,” Atmosphere 12 (2), 208 (2021).

    Article  Google Scholar 

  29. P. Świslowski, Z. Ziembik, and M. Rajfur, “Air quality during New Year’s eve: A biomonitoring study with moss,” Atmosphere 12 (8), 975 (2021).

    Article  Google Scholar 

  30. M. Paçarizi, T. Stafilov, R. Šajn, et al., “Estimation of elements' concentration in air in Kosovo through mosses as biomonitors,” Atmosphere 12 (4), 415 (2021).

    Article  Google Scholar 

  31. N. Rogova, N. Ryzhakova, K. Gusvitskii, and V. Eruntsov, “Studying the influence of seasonal conditions and period of exposure on trace element concentrations in the moss-transplant Pylaisia polyantha,” Environ. Monit. Assess. 193 (4), 168–177 (2021).

    Article  Google Scholar 

  32. A. L. Borisenko, N. K. Ryzhakova, and N. S. Rogova, “Mosses as indicators of urban environmental pollution: Examples of Pylaisia polyantha (Hedw.) B.S.G. from West Siberia,” in Mosses: Ecology, Life Cycle and Significance (Nova Science, 2018), pp. 27–57.

  33. N. K. Ryzhakova, E. A. Pokrovskaya, and V. O. Babicheva, “Evaluation of the vertical turbulent diffusion coefficient of industrial emissions,” Izv., Atmos. Ocean. Phys. 51 (4), 439–443 (2015).

    Article  Google Scholar 

  34. https://www.gismeteo.ru/diary/4690/2010/10/.

  35. https://www.gismeteo.ru/diary/4674/2010/10.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Pokrovskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhakova, N.K., Rogova, N.S., Pokrovskaya, E.A. et al. Influence of Natural and Climatic Conditions on the Values of the Vertical Turbulent Diffusion Coefficient for Long Observation Periods. Izv. Atmos. Ocean. Phys. 58, 553–559 (2022). https://doi.org/10.1134/S0001433822060147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822060147

Keywords:

Navigation