Skip to main content

Advertisement

Log in

Model Estimates of Black Carbon Transfer Probabilities from Russian Forest Fires to Arctic and Its Possible Impact on Climate

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The aim of this study is to assess the probability of black carbon (BC) transfer from high-intensity model forest fires in the taiga zone, determine the fields of concentrations and deposition of BC on the ice–snow surface, and assess the BC contribution to climate change in the Arctic. Model regions with the highest probability of large forest fires (the Komi Republic, Krasnoyarsk krai, and the Republic of Sakha (Yakutia)) are selected based on an analysis of remote monitoring data. The probability of a BC cloud from model fires transferring to the snowy-ice surface of the Arctic is analyzed using the HYSPLIT trajectory model. The probability of a particle emitted from the boreal taiga zone to traverse the sea ice-covered part of the Arctic Ocean is found to be between 1–10%. Effects of BC (the balance of shortwave radiation) on the Arctic climate are estimated on the basis of global climate model of the Institute of Numerical Mathematics Russian Academy of Sciences (INM RAS). According to the results of model experiments, the effect of BC on the balance of shortwave radiation from all model fires in the Northern Hemisphere is 0.11 W m–2 under cloudy conditions and 0.21 W m–2 in a clear sky. The estimated effect on the shortwave radiation balance is a 1.5–2% larger income when compared to the scenario without emission sources. The simulation results showed that the effect of BC emissions from forest fires on the ice-covered Arctic region is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. C. Lavoué, C. Liousse, H. Cachier, B. J. Stocks, and J. G. Goldammer, “Modelling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes,” J. Geophys. Res.: Atmos. 105, 26871–26890 (2000).

    Article  Google Scholar 

  2. IPCC, 2007. IPCC Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  3. AMAP, 2015. Arctic Monitoring and Assessment Programme, Assessment 2015: Black carbon and ozone as Arctic climate forcers (Oslo, 2015).

  4. P. R. Buseck, K. Adachi, A. Gelencser, E. Tompa, and M. Posfai, “Are black carbon and soot the same?,” Atmos. Chem. Phys. Discuss. 12, 24821–24846 (2012). https://doi.org/10.5194/acpd-12-24821-2012

    Article  Google Scholar 

  5. IPCC, 2013. IPCC Climate Change 2013: The Physical Science Basis, Contribution of Working Group I To the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  6. UNEP and WMO, 2011. Integrated Assessment of Black Carbon and Tropospheric Ozone (UNON/Publishing Services Section, Nairobi, 2011).

  7. D. Koch, M. Schulz, S. Kinne, et al., “Evaluation of black carbon estimations in global aerosol models,” Atmos. Chem. Phys. 9, 9001–9026 (2009).

    Article  Google Scholar 

  8. I. L. Karol, A. A. Kiselev, E. L. Genikhovich, and S. S. Chicherin, “Reduction of short-lived atmospheric pollutant emissions as an alternative strategy for climate-change moderation,” Izv., Atmos. Ocean. Phys. 49 (5), 461–478 (2013).

    Article  Google Scholar 

  9. T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, et al., “Bounding the role of black carbon in the climate system: A scientific assessment,” J. Geophys. Res.: Atmos. 118, 5380–5552 (2013).https://doi.org/10.1002/jgrd.50171

    Article  Google Scholar 

  10. K. Huang, J. S. Fu, V. Y. Prikhodko, J. M. Storey, A. Romanov, E. L. Hodson, J. Cresko, I. Morozova, Yu. Ignatieva, and J. Cabaniss, “Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation,” J. Geophys. Res.: Atmos. 120 (21), 11306–11333 (2015). https://doi.org/10.1002/2015JD023358

    Article  Google Scholar 

  11. U.S. EPA, 2012. Report to Congress on Black Carbon (US Environmental Protection Agency, Washington, DC, 2012). http://www.epa.gov/blackcarbon/.

  12. A. A. Romanovskaya, E. V. Imshennik, R. T. Karaban’, N. S. Smirnov, V. N. Korotkov, and A. A. Trunov, “Anthropogenic emissions of short-lived climate-active substances on the territory of Russia within the period from 2000 to 2013,” Probl. Ekol. Monit. Model. Ekosist., 27 (1), 27–45. https://doi.org/10.21513/0207-2016-1-27-48

  13. D. Shindell and G. Faluvegi, “Climate response to regional radiative forcing during the twentieth century,” Nat. Geosci. 2, 294–300 (2009). https://doi.org/10.1038/ngeo473

    Article  Google Scholar 

  14. S. Sharma, M. Ishizawa, D. Chan, D. Lavoué, E. Andrews, K. Eleftheriadis, and S. Maksyutov, “16-year simulation of Arctic black carbon: Transport, source contribution, and sensitivity analysis on deposition,” J. Geophys. Res.: Atmos. 118, 943–964 (2013). https://doi.org/10.1029/2012JD017774

    Article  Google Scholar 

  15. A. F. Stein, R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, “NOAA’s HYSPLIT atmospheric transport and dispersion modeling system,” Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015). http://ready.arl.noaa.gov/HYSPLIT.php.https://doi.org/10.1175/BAMS-D-14-00110.1

    Article  Google Scholar 

  16. Informatsionnoy sistema distantsionnogo monitoringa Federal’nogo agentstva lesnogo khozyaystva (ISDM Rosleskhoz), 2019. https://nffc.aviales.ru/main_pages/ index.shtml. Accessed November 20, 2019.

  17. N. S. Smirnov, V. N. Korotkov, and A. A. Romanovskaya, “Black carbon emissions from wildfires on forest lands of the Russian Federation in 2007–2012,” Russ. Meteorol. Hydrol. 40 (7), 435–442 (2015).

    Article  Google Scholar 

  18. NCEP, 2019. National Centers for Environmental Prediction. http://www.ncep.noaa.gov. Accessed June 1, 2019.

  19. E. M. Volodin, N. A. Diansky, and A. V. Gusev, “Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth’s climate system,” Izv., Atmos. Ocean. Phys. 49 (4), 347–366 (2013).

    Article  Google Scholar 

  20. E. M. Volodin and S. V. Kostrykin, “The aerosol module in the INM RAS climate model,” Russ. Meteorol. Hydrol. 41 (8), 519–528 (2016).

    Article  Google Scholar 

  21. A. A. Vinogradova, N. S. Smirnov, V. N. Korotkov, and A. A. Romanovskaya, “Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic,” Atmos. Oceanic Opt. 28 (6), 566–574 (2015).

    Article  Google Scholar 

  22. A. A. Vinogradova, N. S. Smirnov, and V. N. Korotkov, “Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of black carbon to the Arctic”, Atmos. Oceanic Opt. 29 (6), 545–550 (2016).

    Article  Google Scholar 

  23. M. Evans, N. Kholod, T. Kuklinski, A. Denysenko, S. J. Smith, A. Staniszewski, Hao W.M., Liu L., and Bond T.C. 2017. “Black carbon emissions in Russia: A critical review,” Atmos. Environ. 163, 9–12 (2017). https://doi.org/10.1016/j.atmosenv.2017.05.026

    Article  Google Scholar 

  24. J. D. Paris, A. Stohl, P. Nédélec, M. Y. Arshinov, M. V. Panchenko, V. P. Shmargunov, K. S. Law, B. D. Belan, and P. Ciais, “Wildfire smoke in the Siberian Arctic in summer: Source characterization and plume evolution from airborne measurements,” Atmos. Chem. Phys. 9, 9315–9327 (2009).

    Article  Google Scholar 

  25. V. S. Kozlov, M. V. Panchenko, E. P. Yausheva Time content variations of submicron aerosol and soot in the near-ground layer of the West Siberia atmosphere. // Atmospheric and oceanic optics. 2007. V. 20. No. 12. P. 987–990.

    Google Scholar 

  26. V. S. Kozlov, M. V. Panchenko, E. P. Yausheva Diurnal behavior of the submicron aerosol and black carbon in the ground layer// Atmospheric and oceanic optics. 2010. V. 23. No. 7. P. 561–569.

    Google Scholar 

  27. J. T. Randerson, G. R. van der Werf, L. Giglio, G. J. Collatz, and P. S. Kasibhatla, Global Fire Emissions Database, Version 2 (GFEDv2.1), Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tenn. https://doi.org/10.3334/ORNLDAAC/849

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, grant no. 18-05-60183, “Processes and Consequences of the Long-Range Atmospheric Transport of Black Carbon and Radionuclides in the Arctic.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ginzburg.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginzburg, V.A., Kostrykin, S.V., Revokatova, A.P. et al. Model Estimates of Black Carbon Transfer Probabilities from Russian Forest Fires to Arctic and Its Possible Impact on Climate. Izv. Atmos. Ocean. Phys. 58, 635–644 (2022). https://doi.org/10.1134/S000143382206007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382206007X

Keywords:

Navigation