Skip to main content
Log in

Dusty Plasma of a Wind-Sand Flux in Desertified Areas

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Measurements of electric currents of saltation in the wind-sand flux and currents caused by the wind transport of dust aerosol particles have been carried out in the desertified territories of Astrakhan oblast and Kalmykia. Empirical distribution functions of the specific charge of saltating particles in a wind-sand flux are presented for the conditions of quasi-continuous and intermittent saltation. It is established that the electric charge surface density reaches +25 nC/m2. It is shown that the local electric field on the surface of the saltating particles can exceed 450 kV/m. An abnormal high electrization mechanism of the wind-sand flux is proposed, including the initiation of high-speed saltation: electric (corona) discharges on the underlying surface, which makes it possible to consider the wind-sand flux a dusty plasma. An analytical model has been developed for the escape of saltating particles from the underlying surface during a corona discharge. It is shown that, when saltation is initiated by a corona discharge, the escape velocity of charged particles can exceed 1 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. IPCC Special Report on Global Warming of 1.5°C, 2018.

  2. A. N. Zolotokrylin, Climatic Desertification (Nauka, Moscow, 2003 [in Russian].

    Google Scholar 

  3. R. A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941).

    Google Scholar 

  4. Y. Shao, Physics and Modeling of Wind Erosion (Springer, New York, 2000).

    Google Scholar 

  5. X. Y. Zheng, Mechanics of Windblown Sand Movements (Springer, Berlin, 2009).

    Book  Google Scholar 

  6. O. E. Semenov, Introduction to the Experimental Meteorology and Climatology of Sandstorms (KazNIIEK, Almaty, 2011) [in Russian].

  7. J. F. Kok, E. J. R. Parteli, T. I. Michaels, and D. B. Karam, “The physics of wind-blown sand and dust,” Rep. Prog. Phys. 75, 1–119 (2012).

    Article  Google Scholar 

  8. N. Mahowald, S. Albani, J. F. Kok, S. Engelstaeder, R. Scanza, D. S. Ward, and M. G. Flanner, “The size distribution of desert dust aerosols and its impact on the Earth system,” Aeolian Res. 15, 53–71 (2014).

    Article  Google Scholar 

  9. R. Miller, I. Tegen, and J. Perlwitz, “Surface radiative forcing by soil dust aerosol and the hydrologic cycle,” J. Geophys. Res. 109, DO4203 (2004).

    Article  Google Scholar 

  10. B. A. Mather, J. M. Prospero, D. Mackie, D. Gaiero, P. P. Hesse, and Y. Balkanski, “Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum,” Earth Sci. Rev. 99, 61–97 (2010).

    Article  Google Scholar 

  11. B. Brunekreef and S. T. Holgate, “Air pollution and health,” Lancet 360, 1233–1242 (2002).

    Article  Google Scholar 

  12. E. K. Byutner, Dynamics of the Near-Surface Air Layer (Gidrometeoizdat, Leningrad, 1978) [in Russian].

    Google Scholar 

  13. G. I. Gorchakov, D. V. Buntov, A. V. Karpov, V. M. Kopeikin, S. F. Mirsaitov, R. A. Gushchin, and O. I. Datsenko, “The saltating particle aleurite mode in wind–sand flux over a desertified area,” Dokl. Earth Sci. 488 (2), 1103–1106 (2019).

    Article  Google Scholar 

  14. F. G. Pettijohn, Sedimentary Rocks (Harper, New York, 1957).

    Google Scholar 

  15. G. I. Gorchakov, D. V. Buntov, A. V. Karpov, V. M. Kopeikin, S. F. Mirsaitov, R. A. Gushchin, and O. I. Datsenko, “Wind effect on the size distribution of saltating particles,” Atmos. Oceanic Opt. 33 (2), 198–205 (2020).

    Article  Google Scholar 

  16. A. V. Karpov, G. I. Gorchakov, R. A. Gushchin, and O. I. Datsenko, “Aleurite particle saltation modeling,” Proc. SPIE: Int. Soc. Opt. Eng. 11208, 112084 (2020).

  17. G. I. Gorchakov, A. V. Karpov, R. A. Gushchin, O. I. Datsenko, and D. V. Buntov, “Vertical profiles of the saltating particle concentration on a desertified area,” Dokl. Earth Sci. 496 (2), 119–124 (2021).

    Article  Google Scholar 

  18. G. I. Gorchakov, A. V. Karpov, R. A. Gushchin, O. I. Datsenko, and D. V. Buntov, “Vertical distribution of aleurite and sand particles in windsand flux over a desertified area,” Izv., Atmos. Ocean. Phys. 57 (5), 486–494 (2021).

    Article  Google Scholar 

  19. A. M. Obukhov, Turbulence and Dynamics of the Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  20. S. L. Namikas, “Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach,” Sedimentology 50, 303–326 (2003).

    Article  Google Scholar 

  21. K. R. Rasmussen and M. Sorensen, “Vertical variation of particle speed and flux in aeolian saltation: Measurement and modeling,” J. Geophys. Res. 113, FO2S12 (2008).

    Google Scholar 

  22. T. D. Ho, P. Dupont, A. O. E. Moctar, and A. Valance, “Particle velocity distribution in saltation transport,” Phys. Rev. E 85 (5), 052301 (2012).

    Article  Google Scholar 

  23. D. S. Schmidt, R. A. Schmidt, and Y. D. Dent, “Electrostatic force on saltating sand,” J. Geophys. Res. 103 (D8), 8997–9001 (1998).

    Article  Google Scholar 

  24. S. V. Anisimov, E. A. Mareev, N. M. Shikhova, and E. M. Dmitriev, “Mechanisms for the formation of electric-field pulsation spectra in the near-surface atmosphere,” Radiophys. Quantum Electron. 44 (7), 562–579 (2001).

    Article  Google Scholar 

  25. V. A. Donchenko, M. V. Kabanov, B. V. Kaul’, P. M. Nagorskii, and I. V. Samokhvalov, Electrooptical Phenomena in the Atmosphere (NTL, Tomsk, 2015) [in Russian].

    Google Scholar 

  26. G. I. Gorchakov, V. I. Ermakov, V. M. Kopeikin, A. A. Isakov, A. V. Karpov, and A. V. Ul’yanenko, “Electric currents of saltation in windsand flux,” Dokl. Earth Sci. 410 (2), 1109–1111 (2006).

    Article  Google Scholar 

  27. G. I. Gorchakov, V. M. Kopeikin, A. V. Karpov, A. A. Titov, D. V. Buntov, G. A. Kuznetsov, R. A. Gushchin, O. I. Dazenko, G. A. Kurbatov, A. O. Seregin, and A. V. Sokolov, “Variations in the specific charge of saltating sand in a windsand flux over a desertified area,” Atmos. Oceanic Opt. 29 (1), 244–251 (2016).

    Article  Google Scholar 

  28. G. I. Gorchakov, V. M. Kopeikin, A. V. Karpov, D. V. Buntov, and A. V. Sokolov, “The specific charge of saltation sand particles in arid territories,” Dokl. Earth Sci. 456 (4), 700–704 (2014).

    Article  Google Scholar 

  29. G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, D. V. Buntov, R. A. Gushchin, and O. I. Datsenko, “Dust aerosol emission on the desertified area,” Proc. SPIE: Int. Soc. Opt. Eng. 11560, 1156076 (2020).

  30. T. L. Bo and X. J. Zheng, “A field observational study of electrification within a dust storm in Minqin, China,” Aeolian Res. 8, 39–47 (2013).

    Article  Google Scholar 

  31. P. C. Sinclair, “General characteristics of dust devils,” J. Appl. Meteorol. Climatol. 8 (1), 32–45 (1969).

    Article  Google Scholar 

  32. V. A. Saranin, “Electric field strength of charged conducting balls and the breakdown of the air gap between them,” Phys.-Usp. 45 (12), 1287–1292 (2002).

    Article  Google Scholar 

  33. S. C. Alfaro, A. Gaudichet, L. Gomes, and M. Maille, “Modeling the size distribution of a soil aerosol produced by sandblasting,” J. Geophys. Res. 102, 11239–11249 (1997).

    Article  Google Scholar 

  34. G. I. Gorchakov, A. V. Karpov, and R. A. Gushchin, “Turbulent fluxes of the dust aerosol on the desertified area,” Dokl. Earth. Sci. 494 (2), 799–802 (2020).

    Article  Google Scholar 

  35. A. V. Karpov, G. I. Gorchakov, R. A. Gushchin, and O. I. Datsenko, “Vertical turbulent dust-aerosol fluxes,” Izv., Atmos. Ocean. Phys. 57 (5), 495–503 (2021).

    Article  Google Scholar 

  36. J. F. Kok and N. O. Renno, “Electrostatics in wind-blown sand,” Phys. Rev. Lett. 100 (1), 01450L (2008).

    Article  Google Scholar 

  37. G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, A. V. Sokolov, and D. V. Buntov, “Influence of the Saffman force, lift force, and electric force on sand grain transport in a wind–sand flow,” Dokl. Earth Sci. 467 (3), 314–319 (2016).

    Article  Google Scholar 

  38. F. Esposito, R. Molinaro, C. I. Popa, C. Molfese, F. Cozzolino, L. Marty, K. Taj-Eddine, G. Di Achille, G. Franzese, S. Silvestro, and G. G. Ori, “The role of the atmospheric electric field in the dust-lifting process,” Geophys. Res. Lett. 43 (10), 5501–5508 (2016).

    Article  Google Scholar 

  39. E. A. Malinovskaya, O. G. Chkhetiani, I. N. Panchishkina, G. G. Petrova, and A. I. Petrov, “The relationship between a surface electric field and an arid aerosol under different wind conditions,” Dokl. Earth Sci. 502 (2), 59–67 (2022).

    Article  Google Scholar 

  40. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, “Dusty plasmas,” Phys.-Usp. 47 (5), 447–492 (2004).

    Article  Google Scholar 

  41. V. E. Fortov, A. G. Khrapak, and I. T. Yakubov, Nonideal Plasma Physics (Fizmatiz, Moscow, 2010 [in Russian].

    Google Scholar 

  42. V. V. Smirnov, Ionization in the Troposphere (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  43. D. V. Sivukhin, Electricity: General Course of Physics (Nauka, FML, Moscow, 1983) [in Russian].

  44. Yu. K. Stishkov, A. V. Samusenko, and I. A. Ashikhmin, “Corona discharge and electrogasdynamic flows in the air,” Phys.-Usp. 61 (12), 1213–1226 (2018).

    Article  Google Scholar 

  45. L. V. Kashleva, Atmospheric Electricity (RGGU, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  46. A. A. Sin’kevich and Yu. A. Dovgalyuk, “Corona discharge in clouds,” Radiophys. Quantum Electron. 56 (11–12), 818–828 (2014).

    Article  Google Scholar 

  47. E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen (Geest und Portig K.-G., Leipzig, 1959; Nauka, Fizmatiz, 1961).

  48. J. F. Kok and D. J. Lacks, “Electrification of granular systems of identical insulators,” Phys. Rev. E 79 (5), 051304 (2009).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank G.S. Golitsyn for helpful advice and O.G. Chkhetiani for participating in discussions of the results.

Funding

This work was supported by the Russian Science Foundation (grant no. 20-17-00214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Gorchakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorchakov, G.I., Kopeikin, V.M., Karpov, A.V. et al. Dusty Plasma of a Wind-Sand Flux in Desertified Areas. Izv. Atmos. Ocean. Phys. 58, 466–475 (2022). https://doi.org/10.1134/S000143382205005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382205005X

Keywords:

Navigation