Skip to main content
Log in

Variations in Mesopause Region Characteristics: Space-Factor Effects

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Some important data on both lunar tidal and solar effects on mesopause region characteristics, which were obtained by scientists of the Obukhov Institute of Atmospheric Physics in cooperation with colleagues from other organizations, are discussed. The present-day evidence that supports the hypothesis proposed by A.I. Semenov and N.N. Shefov about the existence of oscillations (with periods of the lunar synodic month and its half) in the mesopause region characteristics is considered. The oscillation amplitudes are estimated based on a statistical analysis of measurement data, possible mechanisms for generating these oscillations are indicated. Statistical data on the effect of solar activity on the mesopause region are discussed. It is shown that the effects of solar activity on some atmospheric characteristics on interannual and intraseasonal time scales have opposite signs, which suggests that there are different physical mechanisms of solar-terrestrial relations within these frequency ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. N. Shefov, A. I. Semenov, and V. Yu. Khomich, Radiation of the Upper Atmosphere as an Indicator of its Structure and Dynamics (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  2. N. N. Shefov, “Some features of hydroxyl emission,” in Polar Glows and Nocturnal Airglows (Nauka, Moscow, 1967), No. 13, pp. 37–43.

  3. J. Egedal, “The tides of the upper atmosphere and the heights of meteors,” Nature 124 (3137), 913–914 (1929).

    Article  Google Scholar 

  4. A. I. Semenov and N. N. Shefov, “An empirical model for the variations in the hydroxyl emission,” Geomagn. Aeron. (Engl. Transl.) 36 (4) 68–85 (1996).

  5. T. Nagata, T. Tohmatsu, and E. Kaneda, “Lunar time variation of the oxygen green line in the airglow,” Rep. Ionos. Space Res. Jpn. 15 (2), 253–262 (1961).

    Google Scholar 

  6. J. Glaume, “Influence des marées lunaires sur l'émission de la raie verte 5577Å de l’oxygène,” C. R. Acad. Sci. 254 (19), 3399–3401 (1962).

    Google Scholar 

  7. T. Tohmatsu and T. Nagata, “Dynamical studies of the oxygen green line in the airglow,” Planet. Space Sci. 10, 103–116 (1963).

    Article  Google Scholar 

  8. G. B. Pokrovskii and G. M. Teptin, “Lunar tides in the upper atmosphere according to radio meteor observations,” Astron. Tsirk., No. 597, 5–7 (1970).

  9. N. N. Shefov, “Lunar variations in the hydroxyl emission,” Geomagn. Aeron. 14 (5), 920–922 (1974).

    Google Scholar 

  10. N. N. Shefov, “Lunar tidal variations of hydroxyl emission,” Ind. J. Radio Space Phys. 3 (13), 313–314 (1974).

    Google Scholar 

  11. E. P. Kropotkina and N. N. Shefov, “Influence of lunar tides on the probability of emergence of noctilucent clouds,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 11 (11), 1184–1186 (1975).

    Google Scholar 

  12. A. T. Doodson, “The harmonic development of tide-generating potential,” Proc. R. Soc. London, Ser. A 100, 305–329 (1921).

    Article  Google Scholar 

  13. J. Scheer and E. R. Reisin, “Rotational temperatures for OH and O2 airglow bands measured simultaneously from El Leoncito (31°48'),” J. Atmos. Terr. Phys. 52 (1), 47–57 (1990).

    Article  Google Scholar 

  14. N. N. Pertsev, P. A. Dalin, and V. I. Perminov, “Influence of semidiurnal and semimonthly lunar tides on the mesopause as observed in hydroxyl layer and noctilucent clouds characteristics,” Geomagn. Aeron. (Engl. Transl.) 55 (6), 811–820 (2015). https://doi.org/10.1134/S0016793215060109

  15. P. Dalin, S. Kirkwood, N. Pertsev, and V. Perminov, “Influence of solar and lunar tides on the mesopause region as observed in polar mesosphere summer echoes characteristics,” J. Geophys. Res.: Atmos. 122 (19), 10369–10383 (2017). https://doi.org/10.1002/2017JD026509

    Article  Google Scholar 

  16. I. S. Astapovich, Meteor Phenomena in the Earth’s Atmosphere (Gos. izd. fiz.–mat. lit., 1958) [in Russian].

  17. S. F. Rodionov, E. N. Pavlova, E. D. Sholokhova, et al., “Annual course of night sky IR radiation,” Dokl. Akad. Nauk SSSR 98 (6), 957 (1954).

    Google Scholar 

  18. O. V. Vasil’ev, Astrophysical Studies of Noctilucent Clouds (Izd. Astrosoveta AN SSSR, Moscow, 1967) [in Russian].

    Google Scholar 

  19. N. N. Shefov, “Behavior of hydroxyl emission during solar cycles, seasons, and geomagnetic disturbances” in Aurorae and Airglow (Nauka, Moscow, 1973), No. 20, pp. 23–39 [in Russian].

  20. A. N. Gruzdev, H. Schmidt, and G. P. Brasseur, “The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry–climate model,” Atmos. Chem. Phys. 9, 595–614 (2009).

    Article  Google Scholar 

  21. http://lasp.colorado.edu/data/timed_see/composite_ lya/version3/.

  22. P. Dalin, S. Kirkwood, H. Andersen, O. Hansen, N. Pertsev, and V. Romejko, “Comparison of long-term Moscow and Danish NLC observations: Statistical results,” Ann. Geophys. 24, 2841–2849 (2006).

    Article  Google Scholar 

  23. C. E. Robert, C. von Savigny, N. Rahpoe, H. Bovensmann, J. P. Burrows, M. T. DeLand, and M. J. Schwartz, “First evidence of a 27 day solar signature in noctilucent cloud occurrence frequency,” J. Geophys. Res. 115, D00I12 (2010). https://doi.org/10.1029/2009JD012359

    Article  Google Scholar 

  24. P. Dalin, N. Pertsev, V. Perminov, A. Dubietis, A. Zadorozhny, M. Zalcik, I. McEachran, T. McEwan, K. Černis, J. Gronne, T. Taustrup, O. Hansen, H. Andersen, D. Melnikov, A. Manevich, et al., “Response of noctilucent cloud brightness to daily solar variations,” J. Atmos. Sol.-Terr. Phys. 169, 83–90 (2018). https://doi.org/10.1016/j.jastp.2018.01.025

    Article  Google Scholar 

  25. B. G. Shpynev, A. V. Oinats, V. P. Lebedev, M. A. Chernigovskaya, I. I. Orlov, A. Yu. Belinskaya, and O. M. Grekhov, “Manifestation of gravitational tides and planetary waves in long-term variations in geophysical parameters,” Geomagn. Aeron. (Engl. Transl.) 54 (4), 500–512 (2014).

  26. P. Dalin, V. Perminov, N. Pertsev, and V. Romejko, “Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds,” J. Geophys. Res.: Atmos., 125, e2019JD030814 (2020). https://doi.org/10.1029/2019JD030814

  27. V. I. Perminov, N. N. Pertsev, P. A. Dalin, Yu. A. Zheleznov, V. A. Sukhodoev, and M. D. Orekhov, “Seasonal and long-term changes in the intensity of O2(b1Σ) and OH(X2Π) airglow in the mesopause region,” Geomagn. Aeron. (Engl. Transl.) 61 (4), 589–599 (2021).https://doi.org/10.1134/S0016793221040113

  28. O. Lednyts’kyy, C. von Savigny, and M. Weber, “Sensitivity of equatorial atomic oxygen in the MLT region to the 11-year and 27-day solar cycles,” J. Atmos. Sol.-Terr. Phys. 162, 136–150 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. N. Pertsev, V. I. Perminov or P. A. Dalin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by B. Dribinskaya

This paper was prepared based on an oral report presented at the All-Russian Conference “Airglow, Structure, and Dynamics of the Middle and Upper Atmosphere” (Moscow, November 22 and 23, 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pertsev, N.N., Perminov, V.I. & Dalin, P.A. Variations in Mesopause Region Characteristics: Space-Factor Effects. Izv. Atmos. Ocean. Phys. 58, 406–411 (2022). https://doi.org/10.1134/S0001433822040119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822040119

Keywords:

Navigation