Skip to main content
Log in

Models of Climate, Geophysical Boundary Layers, and the Active Land Layer: In Memory of V. N. Lykosov

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This paper is dedicated to the memory of Vasily Nikolaevich Lykosov, a prominent Russian scientist and a specialist in the field of mathematical modeling of the dynamics of the turbulent boundary layer and its interaction with large-scale atmospheric circulation, global and regional climatic processes, and the active layer of the land. His scientific activities are briefly described in the context of modern research, one characteristic feature of which is attention to the links between local and global physical phenomena and a combination of theoretical models and numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. V. N. Lykosov, A. V. Glazunov, D. V. Kulyamin, E. V. Mortikov, and V. M. Stepanenko, Supercomputer Modeling in Physics of the Climate Physics (Izd. Mos. Univ., Moscow, 2012) [In Russian].

    Google Scholar 

  2. Models and Methods in the Problem of Atmosphere–Hydrosphere, Ed. by V. P. Dymnikov, V. N. Lykosov, and E. Gordov (Izd. dom Tomsk. gos. univ., Tomsk, 2014) [in Russian].

  3. G. I. Marchuk, V. P. Dymnikov, V. B. Zalesnyi, V. N. Lykosov, and V. Ya. Galin, Mathematical Modeling of Atmospheric and Oceanic Circulation (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  4. G. I. Marchuk, V. P. Dymnikov, V. N. Lykosov, V. Ya. Galin, I. M. Bobyleva, and V. B. Zalesnyi, Hydrodynamic Model of the Atmospheric and Oceanic General Circulation (Methods of Implementation) (VTs SO AN SSSR, Novosibirsk, 1975) [in Russian].

  5. G. I. Marchuk, V. P. Dymnikov, and V. N. Lykossov, “On relation between index cycles of the atmospheric circulation and spatial spectrum of the kinetic energy in the model of the general circulation of the atmosphere,” ECMWF Tech. Memo., No. 31, 1–33 (1981).

  6. V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Mathematical simulation of Earth system dynamics,” Izv., Atmos. Ocean. Phys. 51 (3), 227–240 (2015).

    Article  Google Scholar 

  7. E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykossov, A. S. Gritsun, N. A. Diansky, A. V. Gusev, and N. G. Yakovlev, “Simulation of modern climate with the new version of the INM RAS climate model,” Izv., Atmos. Ocean. Phys. 53 (2), 142–155 (2017).

    Article  Google Scholar 

  8. J. Cuxart, A. A. M. Holtslag, R. J. Beare, et al., “Single-column model intercomparison for a stably stratified atmospheric boundary layer,” Boundary Layer Meteorol. 118 (2), 273–303 (2006).

    Article  Google Scholar 

  9. A. A. M. Holtslag, G. Svensson, P. Baas, et al., “Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models,” B. Am. Meteorol. Soc. 94 (11), 1691–1706 (2013).

    Article  Google Scholar 

  10. M. I. Shaposhnikova, V. N. Lykosov, and L. N. Gutman, “Nonstationary nonlinear problem of a breeze in a stably stratified atmosphere,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 4 (2) 79–89 (1968).

    Google Scholar 

  11. V. N. Lykosov and L. N. Gutman, “Turbulent boundary layer above a sloping underlying surface,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 8 (8), 462–467 (1972).

    Google Scholar 

  12. V. N. Lykosov, “Nonstationary problem of the planetary boundary layer of the Earth’s atmosphere,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 8 (2), 142–155 (1972).

    Google Scholar 

  13. A. L. Kazakov and V. N. Lykosov, “On the parameterization of heat and moisture exchange during storms in atmosphere–ocean interaction problems,” Meteorol. Gidrol., No. 8, 58–64 (1980).

  14. V. N. Lykosov, “On the problem of closure of turbulent boundary layer models using the equations for kinetic turbulent energy and its dissipation rate,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 28 (7), 696–704 (1992).

    Google Scholar 

  15. V. N. Lykossov, “K-theory of atmospheric turbulent planetary boundary layer and the Boussinesq’s generalized hypothesis,” Sov. J. Numer. Anal. Math. Modell. 5 (3), 221–240 (1990).

    Article  Google Scholar 

  16. V. N. Lykosov, “On the counter-gradient transport of momentum in a low-level jet stream,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 27 (8), 803–812 (1991).

    Google Scholar 

  17. V. N. Lykossov, “The momentum turbulent counter-gradient transport in jet-like flows,” Adv. Atmos. Sci. 9 (2), 191–200 (1992).

    Article  Google Scholar 

  18. V. N. Lykosov, “Nonlocal turbulent transfer of momentum in flows with alternating velocity shift,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 29 (3), 321–327 (1993).

    Google Scholar 

  19. S. Zilitinkevich, V. M. Gryanik, V. N. Lykossov, and D. V. Mironov, “Third-order transport and nonlocal turbulence closures for convective boundary layers,” J. Atmos. Sci. 56 (19), 3463–3477 (1999).

    Article  Google Scholar 

  20. V. N. Lykossov and C. Wamser, “Turbulence intermittency in the atmospheric surface layer over snow-covered sites,” Boundary Layer Meteorol. 72 (4), 393–409 (1995).

    Article  Google Scholar 

  21. C. Wamser and V. N. Lykossov, “On the friction velocity during blowing snow,” Contrib. Atmos. Phys. 68 (1), 85–94 (1995).

    Google Scholar 

  22. A. Glazunov, Ü. Rannik, V. Stepanenko, V. Lykosov, M. Auvinen, Vesala T., and I. Mammarella, “Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer,” Geosci. Model Dev. 9 (9, 2925–2949 (2016).

  23. E. V. Mortikov, A. V. Glazunov, and V. N. Lykosov, “Numerical study of plane Couette flow: Turbulence statistics and the structure of pressure-strain correlations,” Russ. J. Numer. Anal. Math. Modell. 34 (2), 119–132 (2019).

    Article  Google Scholar 

  24. V. N. Lykosov, “Twenty years in Akademgorodok: Reminiscence of juvenile science. Our Marchuk,” Ed. by V. P. Il’in and A. K. Lavrova (Sib. otd. RAN, Novosibirsk, 2015), pp. 277–285 [in Russian].

  25. V. N. Lykosov and E. G. Palagin, “Dynamics of the interrelated transport of heat and moisture in the atmosphere–soil system,” Meteorol. Gidrol., No. 8, 48–56 (1978).

  26. V. N. Lykosov and E. G. Palagin, “Heat and moisture transfer in freezing soil and agrometeorological forecast,” Z. Meteorol. 28 (1), 34–41 (1978).

    Google Scholar 

  27. A. M. Globus, Physics of Nonisothermal Moisture Exchange Within the Soil (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  28. V. N. Lykosov and E. G. Palagin, “Method and example of heat and moisture calculation in a freezing soil in the presence of snow cover,” in Transactions of the Main Geophysical Institute (Gidrometeoizdat Leningrad, 1980), vol. 264, pp. 12–23 [in Russian].

    Google Scholar 

  29. I. L. Kalyuzhnyi, V. N. Lykosov, E. G. Palagin, and V. A. Rumyantsev, “Simulation of the moisture migration in freezing soil monoliths,” in Transactions of the Main Geophysical Institute (Gidrometeoizdat Leningrad, 1980), vol. 264, pp. 24–31.

    Google Scholar 

  30. H. Saito, J. Simunek, and B. P. Mohanty, “Numerical analysis of coupled water, vapor, and heat transport in the Vadose Zone,” Vadose Zone J. 5 (2), 784–800 (2006).

    Article  Google Scholar 

  31. K. Noborio, K. J. McInnes, and J. L. Heilman, “Two-dimensional model for water, heat, and solute transport in furrow-irrigated soil: I. Theory,” Soil Sci. Soc. Am. J. 60 (4), 1001–1009 (1996).

    Article  Google Scholar 

  32. E. M. Volodin and V. N. Lykosov, “Parametrization of heat and moisture transfer in the soil–vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data,” Izv., Atmos. Ocean. Phys. 34 (4) 405–416 (1998).

    Google Scholar 

  33. E. M. Volodin and V. N. Lykosov, " Parametrization of heat and moisture transfer in the soil–vegetation system for use in atmospheric general circulation models: 2. Numerical experiments in climate modeling,” Izv., Atmos. Ocean. Phys. 34 (5) 559–569 (1998)

    Google Scholar 

  34. V. A. Alekseev, E. M. Volodin, V. Ya. Galin, V. P. Dymnikov, and V. N. Lykosov, Current Climate Simulation Using the INM RAS Atmospheric Model: Description of Model A5421 Version 1997 and the Results of the AMIP II Experiment (VINITI, Moscow, 1998) [in Russian].

    Google Scholar 

  35. S. P. K. Bowring, R. Lauerwald, B. Guenet, D. Zhu, M. Guimberteau, A. Tootchi, A. Ducharne, and P. Ciais, “ORCHIDEE MICT-LEAK (r5459), a global model for the production, transport, and transformation of dissolved organic carbon from Arctic permafrost regions - Part 1: rationale, model description, and simulation protocol,” Geosci. Model Dev. 12 (8), 3503–3521 (2019).

    Article  Google Scholar 

  36. E. E. Volodina, L. Bengtsson, and V. N. Lykosov, “Parameterization of processes of heat and moisture transfer in snow cover for modeling of seasonal variations of land hydrological cycle,” Meteorol. Gidrol., No. 5, 5–14 (2000).

  37. E. E. Machul’skaya and V. N. Lykosov, “Simulation of the thermodynamic response of permafrost to seasonal and interannual variations in atmospheric parameters,” Izv., Atmos. Ocean. Phys. 38 (1), 15–26 (2002).

    Google Scholar 

  38. E. E. Machul’skaya and V. N. Lykosov, “An advanced snow parameterization for models of atmospheric circulation,” COSMO Newsl., No. 8, 10–16 (2008).

  39. E. E. Machul’skaya and V. N. Lykosov, “Mathematical modeling of the atmosphere–cryolitic zone interaction,” Izv., Atmos. Ocean. Phys. 45 (6), 687–703 (2009).

    Article  Google Scholar 

  40. V. M. Stepanenko, I. A. Repina, V. E. Fedosov, S. S. Zilitinkevich, and V. N. Lykosov, “An overview of parameterezations of heat transfer over moss-covered surfaces in the Earth system models,” Izv., Atmos. Ocean. Phys. 56 (2), 101–111 (2020).

    Article  Google Scholar 

  41. V. M. Stepanenko and V. N. Lykossov, “Numerical modeling of the heat and moisture transport in a lake–soil system,” Russ. Meteorol. Hydrol. 30 (3), 69–77 (2005).

    Google Scholar 

  42. V. Stepanenko, I. A. Repina, A. Artamonov, S. Gorin, V. N. Lykosov, and D. Kulyamin, “Mid-depth temperature maximum in an estuarine lake,” Environ. Res. Lett. 13 (3), 035006 (2018).

    Article  Google Scholar 

  43. V. M. Stepanenko, E. E. Machul’skaya, M. V. Glagolev, and V. N. Lykossov, “Numerical modeling of methane emissions from lakes in the permafrost zone,” Izv., Atmos. Ocean. Phys. 47 (2), 252–263 (2011).

    Article  Google Scholar 

  44. V. Stepanenko, I. Mammarella, A. Ojala, H. Miettinen, V. Lykosov, and T. Vesala, “LAKE 2.0: A model for temperature, methane, carbon dioxide and oxygen dynamics in lakes,” Geosci. Model Dev. 9 (5), 1977–2006 (2016).

    Article  Google Scholar 

  45. V. Bogomolov, V. Stepanenko, and E. Volodin, “Development of lake parametrization in the INMCM climate model,” IOP Conf. Ser.: Earth Environ. Sci. 48 (1), 12005 (2016).

  46. V. M. Stepanenko, A. I. Medvedev, I. A. Korpushenkov, N. L. Frolova, and V. N. Lykosov, “A river routing scheme for an Earth system model,” Vychisl. Metody Program. 20 (4), 396–410 (2019).

    Google Scholar 

Download references

Funding

This work was supported in part by the Russian Science Foundation, grant no. 21-71-30003, sections 1–3 and the Russian Foundation for Basic Research, grant no. 20-05-00773, sections 4–6). Lykosov took an active part in these projects until the last days of his life.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Stepanenko.

Ethics declarations

The authors declare that they have no conflict of interest

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dymnikov, V.P., Zalesnyi, V.B., Glazunov, A.V. et al. Models of Climate, Geophysical Boundary Layers, and the Active Land Layer: In Memory of V. N. Lykosov. Izv. Atmos. Ocean. Phys. 58, 321–328 (2022). https://doi.org/10.1134/S0001433822040041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822040041

Keywords:

Navigation