Skip to main content

Experimental Estimates of Integral Anthropogenic CO2 Emissions in the City of St. Petersburg


The increase in the content of greenhouse gases (CO2, CH4, N2O, etc.) in the Earth’s atmosphere is changing the radiation balance and leading to changes in the planet’s climate. An important role in this process is played by anthropogenic emissions of carbon dioxide (CO2) from metropolises, of which the contribution is approximately 70% of all anthropogenic emissions. In this work, anthropogenic CO2 emissions of the St. Petersburg metropolitan area are determined based on the data of the EMME 2019 experimental program. A new technique for solving the inverse problem was used that is based on a priori data and the application of correction factors only in the city areas covered by observations. The new estimates of integral anthropogenic CO2 emissions in St. Petersburg are in the range of 52–72 Mt CO2/year, significantly exceeding the inventory estimates (~30 Mt CO2/year). However, the minimum value of the range (52 Mt CO2/year) is about 21% less than our previously obtained 2019 EMME data emissions (65 Mt CO2/year).

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, (Cambridge Univ. Press, Cambridge, 2021).

    Google Scholar 

  2. IEA. World Energy Outlook, 2008. https://www.iea. org/reports/world-energy-outlook-2008.

  3. T. Oda, R. Bun, V. Kinakh, et al., “Errors and uncertainties in a gridded carbon dioxide emissions inventory,” Mitigation Adapt. Strategies Global Change 24, 1007–1050 (2019).

    Article  Google Scholar 

  4. H. Bovensmann, M. Buchwitz, J. P. Burrows, M. Reuter, T. Krings, K. Gerilowski, O. Schneising, J. Heymann, A. Tretner, and J. Erzinger, “A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications,” Atmos. Meas. Tech. 3, 781–811 (2010).

    Article  Google Scholar 

  5. Methods for Remote Determination of CO 2 Emissions (JAS-ON, The MITRE Corporation, McLean, Va., 2011).

  6. P. Bergamaschi, A. Danila, R. F. Weiss, P. Ciais, R. L. Thompson, D. Brunner, I. Levin, Y. Meijer, F. Chevallier, G. Janssens-Maenhout, H. Bovensmann, D. Crisp, S. Basu, E. Dlugokencky, R. Engelen, et al., Atmospheric Monitoring and Inverse Modelling for Verification of Greenhouse Gas Inventories (European Commission JRC, Luxembourg, 2018).

  7. S. N. Denisov, A. V. Eliseev, and I. I. Mokhov, “Contribution of natural and anthropogenic emissions of CO2 and CH4 to the atmosphere from the territory of Russia to global climate changes in the twenty-first century,” Dokl. Earth Sci. 488 (1), 1066–1071 (2019).

    Article  Google Scholar 

  8. I. G. Enting, Inverse Problems in Atmospheric Constituent Transport (Cambridge University Press, Cambridge, UK, 2002).

  9. S. Basu, D. F. Baker, F. Chevallier, P. K. Patra, J. Liu, and J. B. Miller, “The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2,” Atmos. Chem. Phys. 18, 7189–7215 (2018).

    Article  Google Scholar 

  10. P. Peylin, R. M. Law, K. R. Gurney, F. Chevallier, A. R. Jacobson, T. Maki, Y. Niwa, P. K. Patra, W. Peters, P. J. Rayner, C. Rodenbeck, I. T. van der Laan-Luijkx, and X. Zhang, “Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions,” Biogeosciences 10, 6699–6720 (2013).

    Article  Google Scholar 

  11. A Guidebook on the Use of Satellite Greenhouse Gases Observation Data to Evaluate and Improve Greenhouse Gas Emission Inventories, Ed. by T. Matsunaga and S. Maksyutov (Satellite Observation Center, National Institute for Environmental Studies, Japan, 2018).

    Google Scholar 

  12. D. Wunch, G. C. Toon, J. -F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg, “The total carbon column observing network,” Philos. Trans. R. Soc. A 369, 2087–2112 (2011).

    Article  Google Scholar 

  13. F. Hase, M. Frey, T. Blumenstock, J. Groß, M. Kiel, R. Kohlhepp, G. Mengistu Tsidu, K. Schäfer, M. K. Sha, and J. Orphal, “Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin,” Atmos. Meas. Tech. 8, 3059–3068 (2015).

    Article  Google Scholar 

  14. J. Chen, C. Viatte, J. K. Hedelius, T. Jones, J. E. Franklin, H. Parker, E. W. Gottlieb, P. O. Wennberg, M. K. Dubey, and S. C. Wofsy, “Differential column measurements using compact solar-tracking spectrometers,” Atmos. Chem. Phys. 16, 8479–8498 (2016).

    Article  Google Scholar 

  15. M. Frey, F. Hase, T. Blumenstock, J. Groß, M. Kiel, G. Mengistu Tsidu, Schäfer K., K. M. Sha, and J. Orphal, “Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions,” Atmos. Meas. Tech. 8, 3047–3057 (2015).

    Article  Google Scholar 

  16. F. R. Vogel, M. Frey, J. Staufer, F. Hase, G. Broquet, I. Xueref-Remy, F. Chevallier, P. Ciais, M. K. Sha, P. Chelin, P. Jeseck, C. Janssen, Y. Té, J. Groß, T. Blumenstock, et al., “XCO2 in an emission hot-spot region: The COCCON Paris campaign 2015,” Atmos. Chem. Phys. 19, 3271–3285 (2019).

    Article  Google Scholar 

  17. Q. Tu, F. Hase, T. Blumenstock, R. Kivi, P. Heikkinen, M. K. Sha, U. Raffalski, J. Landgraf, A. Lorente, T. Borsdorff, H. Chen, F. Dietrich, and J. Chen, “Intercomparison of atmospheric CO2 and CH4 abundances on regional scales in boreal areas using Copernicus Atmosphere Monitoring Service (CAMS) analysis, COllaborative Carbon Column Observing Network (COCCON) spectrometers, and Sentinel-5 Precursor satellite observations,” Atmos. Meas. Tech. 13, 4751–4771 (2020).

    Article  Google Scholar 

  18. F. Dietrich, J. Chen, B. Voggenreiter, P. Aigner, N. Nachtigall, and B. Reger, “MUCCnet: Munich Urban Carbon Column network,” Atmos. Meas. Tech. 14, 1111–1126 (2021).

    Article  Google Scholar 

  19. M. V. Makarova, C. Alberti, D. V. Ionov, F. Hase, S. C. Foka, T. Blumenstock, T. Warneke, Y. Virolainen, V. Kostsov, M. Frey, A. V. Poberovskii, Y. M. Timofeyev, N. Paramonova, K. A. Volkova, N. A. Zaitsev, et al., “Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign-2019,” Atmos. Meas. Tech. 14, 1047–1073 (2021).

    Article  Google Scholar 

  20. Y. M. Timofeyev, G. M. Nerobelov, Ya. A. Virolainen, A. V. Poberovskii, and S. C. Foka, “Estimates of CO2 anthropogenic emission from the megacity St. Petersburg,” Dokl. Earth Sci. 494 (1), 753–756 (2020).

    Article  Google Scholar 

  21. D. V. Ionov, M. V. Makarova, F. Hase, S. C. Foka, V. S. Kostsov, C. Alberti, T. Blumenstock, T. Warneke, and Ya. A. Virolainen, “The CO2 integral emission by the megacity of St. Petersburg as quantified from ground-based FTIR measurements combined with dispersion modeling,” Atmos. Chem. Phys. 21, 10939–10963 (2021).

    Article  Google Scholar 

  22. T. Oda and S. Maksyutov, “A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights,” Atmos. Chem. Phys. 11, 543–556 (2011).

    Article  Google Scholar 

  23. X. Zhao, J. Marshall, S. Hachinger, C. Gerbig, M. Frey, F. Hase, and J. Chen, “Analysis of total column CO2 and CH4 measurements in Berlin with WRF-GHG,” Atmos. Chem. Phys. 19, 11279–11302 (2019).

    Article  Google Scholar 

  24. J. C. Lin, C. Gerbig, S. C. Wofsy, A. E. Andrews, B. C. Daube, K. J. Davis, and C. A. Grainger, “A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model,” J. Geophys. Res. 108 (D16), 4493 (2003).

    Article  Google Scholar 

  25. W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner, W. Wang, J. G. Powers, M. G. Duda, D. M. Barker, and X.-Y. Huang, A Description of the Advanced Research WRF Version 4, NCAR Tech. Note NCAR/TN-556+STR, 2019.

  26. Report on the Environmental State in St. Petersburg for 2017, Ed. by I. A. Serebritskii (Sezam-print, St. Petersburg, 2018). ckeditor/uploads/2018/06/29/Doklad_EKOLOGIA2018. pdf.

    Google Scholar 

  27. FileRepository/Resources/Documentation/Fluxes.

  28. Yu. M. Timofeev, I. A. Berezin, Ya. A. Virolainen, A. V. Poberovskii, M. V. Makarova, and A. V. Polyakov, “Estimates of anthropogenic CO2 emissions for Moscow and St. Petersburg based on OCO-2 satellite measurements,” Atmos. Oceanic Opt. 33, 656–660 (2020).

    Article  Google Scholar 

Download references


This work was supported by state contract no. 13.2251.21.0005 of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Yu. M. Timofeyev or G. M. Nerobelov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Timofeyev, Y.M., Nerobelov, G.M. & Poberovskii, A.V. Experimental Estimates of Integral Anthropogenic CO2 Emissions in the City of St. Petersburg. Izv. Atmos. Ocean. Phys. 58, 237–245 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • CO2 emissions from St. Petersburg
  • differential method
  • ground-based spectroscopic measurements
  • errors