Skip to main content
Log in

Frequency of Summer Atmospheric Blockings in the Northern Hemisphere in Different Phases of El Niño and Pacific Decadal and Atlantic Multidecadal Oscillations

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Regional anomalies in the frequency of atmospheric blockings in the Northern Hemisphere detected on the basis of reanalysis data since 1979 during different phase transitions of El Niño phenomena in different phases of the Pacific Decadal and Atlantic Multidecadal Oscillations are estimated—in particular, the regional frequency of summer blockings associated with extreme phases of El Niño phenomena and transitions between them. Significant differences are noted for the El Niño phenomena detected with the use of different indices characterizing different process types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, (Cambridge Univ. Press, Cambridge, 2021).

    Google Scholar 

  2. IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, Cambridge, 2013).

    Google Scholar 

  3. I. I. Mokhov, “Climate change: Causes, risks, consequences, and problems of adaptation and regulation,” Herald Russ. Acad. Sci. 92 (1), 1–11 (2022).

    Article  Google Scholar 

  4. D. F. Rex, “Blocking action in the middle troposphere and its effect on regional climate. Part I: An aerological study of blocking action,” Tellus 2, 196–211 (1950).

    Google Scholar 

  5. D. F. Rex, “Blocking action in the middle troposphere and its effect on regional climate. Part II: The climatology of blocking action,” Tellus 2, 275–301 (1950).

    Google Scholar 

  6. J. G. Charney and J. G. DeVore, “Multiple flow equilibria in the atmosphere and blocking,” J. Atmos. Sci. 36, 1205–1236 (1979).

    Article  Google Scholar 

  7. R. Dole and N. Gordon, “Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical-distribution and regional persistence characteristics,” Mon. Weather Rev. 111 (8), 1567–1586 (1983).

    Article  Google Scholar 

  8. H. Lejenäs and H. Øakland, “Characteristics of northern hemisphere blocking as determined from long time series of observational data,” Tellus A 35, 350–362 (1983).

    Article  Google Scholar 

  9. A. M. Obukhov, M. V. Kurganskii, M. S. Tatarskaya, “Dynamical conditions for the occurrence of draughts and other large-scale weather anomalies,” Meteorol. Gidrol., No. 10, 5–13 (1984).

  10. S. Tibaldi and F. Molteni, “On the operational predictability of blocking,” Tellus A 42, 343–365 (1990).

    Article  Google Scholar 

  11. G. V. Gruza and L. V. Korovkina, “Seasonal features of the spatial distribution of blocking indices in the Northern Hemisphere, Meteorol. Gidrol., No. 3, 108–110 (1991).

  12. G. V. Gruza and L. V. Korovkina, “Climate monitoring of western transfer blocking in the Northern Hemisphere,” Meteorol. Gidrol., No. 8, 11–18 (1991).

  13. A. R. Hansen and A. A. Sutera, “Comparison between planetary-wave flow regimes and blocking,” Tellus A 45, 281–288 (1993).

    Article  Google Scholar 

  14. I. I. Mokhov, T. N. Doronina, V. M. Gryanik, R. R. Khairullin, L. V. Korovkina, V. E. Lagun, O. I. Mokhov, E. P. Naumov, V. K. Petukhov, A. O. Senatorsky, and M. V. Tevs, “Extratropical cyclones and anticyclones: Tendencies of change,” in The Life of Extratropical Cyclones, Ed. by S. Gronas and M. A. Shapiro (Geophysical Institute, University of Bergen, Bergen, Norway, 1994), Vol. 2, pp. 56–60.

    Google Scholar 

  15. I. I. Mokhov, V. K. Petukhov, and A. O. Senatorsky, “Sensitivity of storm track activity and blockings to global climatic changes: Diagnostics and modelling,” Publ. Acad. Sci. Finl., No. 6, 438–441 (1995).

  16. J. A. Renwick and J. M. Wallace, “Relationships between North Pacific wintertime blocking, El Niño, and PNA pattern,” Mon. Weather Rev. 124, 2071–2076 (1996).

    Article  Google Scholar 

  17. I. I. Mokhov and V. K. Petukhov, “Blockings and tendencies of their change,” Dokl. Earth Sci. 357 (8) 1485–1488 (1997).

    Google Scholar 

  18. A. R. Lupo, R. J. Oglesby, and I. I. Mokhov, “Climatological features of blocking anticyclones: A study of Northern Hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmospheres,” Clim. Dyn. 13, 181–195 (1997).

    Article  Google Scholar 

  19. J. M. Wiedenmann, A. R. Lupo, I. I. Mokhov, and E. A. Tikhonova, “The climatology of blocking anticyclones for the Northern and Southern hemispheres: Block intensity as a diagnostic,” J. Clim. 15 (23), 3459–3473 (2002).

    Article  Google Scholar 

  20. J. L. Pelly and B. J. Hoskins, “A new perspective on blocking,” J. Atmos. Sci. 60, 743–755 (2003).

    Article  Google Scholar 

  21. M. Bardin, G. V. Gruza, A. R. Lupo, I. I. Mokhov, and V. A. Tikhonov, “Quasi-stationary anticyclones in the Northern Hemisphere: An analysis of interannual and interdecadal variability and long-term trends at 1000 hPa and 500 hPa using geometric definition,” in Proc. 16th Symp. on Global Change and Climate Variation, 85th Annual Meeting AMS, 2005, pp. 9–13.

  22. I. I. Mokhov, “Action as an integral characteristic of climatic structures: Estimates for atmospheric blockings,” Dokl. Earth Sci. 409 (6), 925–928 (2006).

    Article  Google Scholar 

  23. D. Barriopedro, R. Garcia-Herrera, A. R. Lupo, and E. Hernandez, “A climatology of Northern Hemisphere blocking,” J. Clim. 19, 1042–1063 (2006).

    Article  Google Scholar 

  24. Y. Diao, J. Li, and D. Luo, “A new blocking index and its application: Blocking action in the Northern Hemisphere,” J. Clim. 19, 4819–4839 (2006).

    Article  Google Scholar 

  25. S. C. Scherer, M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, “Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region,” Int. J. Climatol. 26, 233–249 (2006).

    Article  Google Scholar 

  26. M. Yu. Bardin, “Anticyclonic quasi-stationary circulation and its effect on air temperature anomalies and extremes over western Russia,” Russ. Meteorol. Hydrol. 32 (2), 75–84 (2007).

    Article  Google Scholar 

  27. A. P. Lupo, I. I. Mokhov, S. Dostoglou, et al., “Assessment of the impact of the planetary scale on the decay of blocking and the use of phase diagrams and enstrophy as a diagnostic,” Izv., Atmos. Ocean. Phys. 43 (1), 45–51 (2007).

    Article  Google Scholar 

  28. M. Croci-Maspoli, C. Schwierz, and H. C. Davies, “A multifaceted climatology of atmospheric blocking and its recent linear trend,” J. Clim. 20, 633–649 (2007).

    Article  Google Scholar 

  29. E. Tyrlis and B. J. Hoskins, “Aspects of a Northern Hemisphere atmospheric blocking climatology,” J. Atmos. Sci. 65, 1638–1652 (2008).

    Article  Google Scholar 

  30. N. P. Shakina and A. R. Ivanova, “The blocking anticyclones: The state of studies and forecasting,” Russ. Meteorol. Hydrol. 35 (11), 721–730 (2010).

    Article  Google Scholar 

  31. D. Luo, J. Liu, and J. Li, “Interaction between planetary-scale diffluent flow and synoptic-scale waves during the life cycle of blocking,” Adv. Atmos. Sci. 27 (4), 807–831 (2010).

    Article  Google Scholar 

  32. I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. Phys. 47 (6), 653–660 (2011).

    Article  Google Scholar 

  33. M. Matsueda, “Predictability of Euro–Russian blocking in summer of 2010,” Geophys. Res. Lett. 38, L06801 (2011). https://doi.org/10.1029/2010GL046557

    Article  Google Scholar 

  34. I. I. Mokhov, M. G. Akperov, M. A. Prokof’eva, A. A. Timazhev, A. R. Lupo, and H. Le Treut, “Blockings in the Northern Hemisphere and Euro–Atlantic region: Estimates of changes from reanalysis data and model simulations,” Dokl. Earth Sci. 449 (2), 430–433 (2013).

    Article  Google Scholar 

  35. E. Dunn-Sigouin and S.-W. Son, “Northern Hemisphere blocking frequency and duration in the CMIP5 models,” J. Geophys. Res. 118, 1179–1188 (2013).

    Article  Google Scholar 

  36. Second Rosgidromet Assessment Report on Climate Changes and Their Impact in the Territory of the Russian Federation (Rosgidromet, Moscow, 2014) [in Russian].

  37. I. I. Mokhov, V. Ch. Khon, A. V. Timazhev, et al., “Hydrological anomalies and change trends in the Amur River basin due to climate change,” in Extreme Floods in the Amur River Basin: Causes, Forecasts, and Recommendations (Roshydromet, Moscow, 2014) [in Russian], pp. 81–120.

  38. G. Masato, T. Woolings, and B. Hoskins, “Structure and impact of atmospheric blocking over the Euro-Atlantic region in present-day and future simulations,” Geophys. Res. Lett. 41, 1051–1058 (2014).

    Article  Google Scholar 

  39. E. A. Barnes, J. Slingo, and T. Woollings, “A methodology for the comparison of blocking climatologies across indices, models and climate scenarios,” Clim. Dyn 38, 2467–2481 (2012).

    Article  Google Scholar 

  40. E. A. Barnes, E. Dunn-Sigouin, G. Masato, and T. Woollings, “Exploring recent trends in Northern Hemisphere blocking,” Geophys. Res. Lett. 41, 638–644 (2014).

    Article  Google Scholar 

  41. I. I. Mokhov, A. V. Timazhev, and A. R. Lupo, “Changes in atmospheric blocking characteristics within Euro-Atlantic region and Northern Hemisphere as a whole in the 21st century from model simulations using RCP anthropogenic scenarios,” Global Planet. Change 122, 265–270 (2014).

    Article  Google Scholar 

  42. I. I. Mokhov and A. V. Timazhev, “Assessing the probability of El Niño-related weather and climate anomalies in Russian regions,” Russ. Meteorol. Hydrol. 42 (10), 635–643 (2017).

    Article  Google Scholar 

  43. I. I. Mokhov and A. V. Timazhev, “Atmospheric blocking and changes in its frequency in the 21st century simulated with the ensemble of climate models,” Russ. Meteorol. Hydrol. 44 (6), 369–377 (2019).

    Article  Google Scholar 

  44. A. R. Lupo, A. D. Jensen, I. I. Mokhov, A. Timazhev, T. Eichler, and B. Efe, “Changes in global blocking character during recent decades,” Atmosphere 10 (2), 92 (2019). https://doi.org/10.3390/atmos10020092

    Article  Google Scholar 

  45. V. G. Bondur, I. I. Mokhov, O. S. Voronova, and S. A. Sitnov, “Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes,” Dokl. Earth Sci. 492 (1) 370–375 (2020).

    Article  Google Scholar 

  46. I. I. Mokhov, V. G. Bondur, S. A. Sitnov, and O. S. Voronova, “Satellite monitoring of wildfires and emissions into the atmosphere of combustion products in Russia: Relation to atmospheric blockings,” Dokl. Earth Sci. 495 (2), 921–924 (2020).

    Article  Google Scholar 

  47. I. I. Mokhov “Extreme atmospheric and hydrological phenomena in Russian regions: Relationship with the Pacific decadal oscillation,” Dokl. Earth Sci. 500 (2), 861–865 (2021).

    Article  Google Scholar 

  48. I. I. Mokhov, S. A. Sitnov, M. N. Tsidilina, and O. S. Voronova, “Relation between pyrogenic NO2 emissions from wildfires in Russia and atmospheric blocking events,” Atmos. Oceanic Opt. 34 (6), 503–506 (2021).

    Article  Google Scholar 

  49. K. Arpe, L. Bengtsson, G. S. Golitsyn, I. I. Mokhov, V. A. Semenov, and P. V. Sporyshev, “Analysis and modeling of the hydrological regime variations in the Caspian sea basin,” Dokl. Earth Sci. 366 (2), 552–556 (1999).

    Google Scholar 

  50. I. I. Mokhov, D. V. Khvorostyanov, and A. V. Eliseev, “Decadal and longer term changes in El Niño–Southern Oscillation characteristics,” Int. J. Climatol. 24, 401–414 (2004).

    Article  Google Scholar 

  51. I. I. Mokhov, “Hydrological anomalies and tendencies of change in the basin of the Amur River under global warming,” Dokl. Earth Sci. 455 (2), 459–462 (2014).

    Article  Google Scholar 

  52. D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, et al., “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  53. I. I. Mokhov, “Predictability of seasonal temperature anomalies in the North Eurasian regions in the La Niña conditions,” in Research Activities in Earth System Modelling, Ed. by E. Astakhova (WMO, Geneva, 2021), Rep. 51, pp. 6-07–6-08.

  54. I. I. Mokhov, “Changes in the frequency of phase transitions of different types of El Niño phenomena in recent decades,” Izv., Atmos. Ocean. Phys. 58 (1), 1–6 (2022).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (no. 19-17-00240), as well as by the Ministry of Science and Higher Education of the Russian Federation (Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences) in the part of the study of features of the atmospheric blocking predictability in the regions of northern Eurasia in recent decades were assessed in accordance with agreement no. 075-15-2021-577.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Mokhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I., Timazhev, A.V. Frequency of Summer Atmospheric Blockings in the Northern Hemisphere in Different Phases of El Niño and Pacific Decadal and Atlantic Multidecadal Oscillations. Izv. Atmos. Ocean. Phys. 58, 199–207 (2022). https://doi.org/10.1134/S0001433822030094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822030094

Keywords:

Navigation