Skip to main content

Variation of Northern Hemispheric Wintertime Storm Tracks under Future Climate Change in INM-CM5 Simulations

Abstract—

The response of Northern Hemisphere storm tracks (North Atlantic and North Pacific) to climate change and to the strengthening and weakening of the stratospheric polar vortex is investigated in simulations of the Institute of Numerical Mathematics of the Russian Academy of Sciences Climate Model version 5 (INM-CM5) under phase 6 of the Coupled Model Intercomparison Project for the moderate (SSP2-4.5) and severe (SSP5-8.5) greenhouse gas emission scenarios (2015–2100). A significant northward shift of both storm tracks and some strengthening of the North Pacific and weakening of the North Atlantic storm track are expected by the late 21st century under SSP2-4.5. In SSP5-85, the response of both storm tracks manifests itself mainly through amplification and, to a lesser extent, through a poleward. Moreover, there is a difference in the response of the North Pacific and North Atlantic storm tracks to the strengthening and weakening of the stratospheric polar vortex under different climate conditions. Changes in the storm tracks associated with eddy moisture flux demonstrate a character comparable to changes in their intensity, both due to an increase in greenhouse gas concentrations and due to changes in the stratospheric polar vortex.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. E. Chang, S. Lee, and K. Swanson, “Storm track dynamics,” J. Clim. 15, 2163–2182 (2002).

    Article  Google Scholar 

  2. E. Chang, Y. Guo, X. Xia, and M. Zheng, “Storm-track activity in IPCC AR4/CMIP3 model simulations,” J. Clim. 26, 246–260 (2013).

    Article  Google Scholar 

  3. J. Lehmann and D. Coumou, “The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes,” Sci. Rep. 5 (1), 1–9 (2015).

    Article  Google Scholar 

  4. H. Nakamura, “Midwinter suppression of baroclinic wave activity in the Pacific,” J. Atmos. Sci. 49, 1629–1642 (1992).

    Article  Google Scholar 

  5. B. J. Hoskins and K. I. Hodges, “The annual cycle of Northern Hemisphere storm tracks. Part I: Seasons,” J. Clim. 32 (6), 1743–1760 (2019).

    Article  Google Scholar 

  6. B. J. Hoskins and K. I. Hodges, “The annual cycle of Northern Hemisphere storm tracks. Part II: Regional detail,” J. Clim. 32 (6), 1761–1775 (2019).

    Article  Google Scholar 

  7. D. Straus and J. Shukla, “Variations of midlatitude transient dynamics associated with ENSO,” J. Atmos. Sci. 54, 777–790 (1997).

    Article  Google Scholar 

  8. J. Wang, H. M. Kim, and E. K. Chang, “Changes in Northern Hemisphere winter storm tracks under the background of Arctic amplification,” J. Clim. 30 (10), 3705–3724 (2017).

    Article  Google Scholar 

  9. Y. Nie, H. L. Ren, and A. A. Scaife, “Enhanced mid-to-late winter predictability of the storm track variability in the North Pacific as a contrast with the North Atlantic,” Environ. Res. Lett. 15 (9), 094037 (2020).

    Article  Google Scholar 

  10. Y. Guo, T. Shinoda, J. Lin, and E. K. Chang, “Variations of Northern Hemisphere storm track and extratropical cyclone activity associated with the Madden-Julian oscillation,” J. Clim. 30 (13), 4799–4818 (2017).

    Article  Google Scholar 

  11. D. W. Thompson and J. M. Wallace, “The Arctic Oscillation signature in wintertime geopotential height and temperature fields,” Geophys. Res. Lett. 25, 1297–1300 (1998).

    Article  Google Scholar 

  12. J. Kidston, A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, “Stratospheric influence on tropospheric jet streams, storm tracks and surface weather,” Nat. Geosci. 8 (6), 433–440 (2015).

    Article  Google Scholar 

  13. Z. D. Lawrence, J. Perlwitz, A. H. Butler, G. L. Manney, P. A. Newman, S. H. Lee, and E. R. Nash, “The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic Oscillation and ozone loss,” J. Geophys. Res.: Atmos. 125, 909 (2020). https://doi.org/10.1029/2020JD033271

    Article  Google Scholar 

  14. S. H. Lee, Z. Lawrence, A. Butler, and A. Karpechko, “Seasonal forecasts of the exceptional Northern Hemisphere winter of 2020,” Geophys. Res. Lett. 47 (21), e2020GL090328 (2020). https://doi.org/10.1029/2020GL090328

  15. P. Davies, M. McCarthy, N. Christidis, N. Dunstone, D. Fereday, M. Kendon, J. Knight, A. Scaife, and D. Sexton, “The wet and stormy UK winter of 2019/2020,” Weather 76 (12), 396–402 (2021). https://doi.org/10.1002/wea.3955

    Article  Google Scholar 

  16. J. Wang, H.-M. Kim, and E. Chang, “Interannual modulation of Northern Hemisphere winter storm tracks by the QBO,” Geophys. Res. Lett. 45, 2786–2794 (2018).

    Article  Google Scholar 

  17. H. Afargan and Y. Kaspi, “A midwinter minimum in North Atlantic storm track intensity in years of a strong jet,” Geophys. Res. Lett. 44, 12511–12518 (2017).

    Article  Google Scholar 

  18. A. V. Gavrikov, M. Krinitsky, N. Tilinina, Y. Zyulyaeva, A. Dufour, and S. K. Gulev, “Response of the atmospheric rivers and storm tracks to the sudden stratospheric warming events on the basis of North Atlantic atmospheric downscaling (1979+),” IOP Conf. Ser.: Earth Environ. Sci. 606 (1), 012011 (2020).

  19. H. Afargan-Gerstman and D. Domeisen, “Pacific modulation of the North Atlantic storm track response to sudden stratospheric warming events,” Geophys. Res. Lett. 47 (2) e2019GL085007 (2020).

  20. T. P. Eichler, N. Gaggini, and Z. Pan, “Impacts of global warming on Northern Hemisphere winter storm tracks in the CMIP5 model suite,” J. Geophys. Res.: Atmos. 118, 3919–3932 (2013).

    Article  Google Scholar 

  21. Yu. V. Martynova and V. N. Krupchatnikov, “Peculiarities of the dynamics of the general atmospheric circulation in conditions of the global climate change,” Izv., Atmos. Ocean Phys. 51 (3), 299–310 (2015).

    Article  Google Scholar 

  22. T. Tamarin and Y. Kaspi, “The poleward shift of storm tracks under global warming: A Lagrangian perspective,” Geophys. Res. Lett. 44 (20), 10666–10674 (2017).

    Article  Google Scholar 

  23. J. Lehmann, D. Coumou, K. Frieler, A. V. Eliseev, and A. Levermann, “Future changes in extratropical storm tracks and baroclinicity under climate change,” Environ. Res. Lett. 9 (8), 084002 (2014).

    Article  Google Scholar 

  24. C. Mbengue and T. Schneider, “Storm-track shifts under climate change: Toward a mechanistic understanding using baroclinic mean available potential energy,” J. Atmos. Sci. 74 (1), 93–110 (2017).

    Article  Google Scholar 

  25. T. A. Shaw, “Mechanisms of future predicted changes in the zonal mean mid-latitude circulation,” Curr. Clim. Change Rep. 5 (4), 345–357 (2019).

    Article  Google Scholar 

  26. B. Harvey, L. Shaffrey, and T. Woollings, “Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models,” Clim. Dyn. 43, 1171–1182 (2011).

    Article  Google Scholar 

  27. B. J. Harvey, P. Cook, L. C. Shaffrey, and R. Schiemann, “The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models,” J. Geophys. Res.: Atmos. 125 (23), e2020JD032701 (2020).

  28. E. M. Volodin and A. S. Gritsun, “Simulation of possible future climate changes in the 21st century in the INM-CM5 climate model,” Izv., Atmos. Ocean Phys. 56 (3), 218–228 (2020).

    Article  Google Scholar 

  29. E. M. Volodin, “Relationship between natural climate variability and equilibrium sensitivity in the climate model of the Institute of Numerical Mathematics of the Russian Academy of Sciences to increasing CO2,” Izv., Atmos. Ocean Phys. 57 (5), 447–450 (2021).

    Article  Google Scholar 

  30. E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykosov, A. S. Gritsun, N. A. Dianskii, A. V. Gusev, and N. G. Yakovlev, “Simulation of modern climate with the new version of the INM RAS climate model,” Izv., Atmos. Ocean Phys. 53 (2) 142–155 (2017).

    Article  Google Scholar 

  31. B. C. O’Neill, C. Tebaldi, D. P. van Vuuren, V. Eyring, P. Friedlingstein, G. Hurtt, R. Knutti, E. Kriegler, J.‑F. Lamarque, J. Lowe, G. A. Meehl, R. Moss, K. Riahi, and B. M. Sanderson, “The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6,” Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  Google Scholar 

  32. B. Ayarzagüena, A. J. Charlton-Perez, A. H. Butler, et al., “Uncertainty in the response of sudden stratospheric warmings and stratosphere–troposphere coupling to quadrupled CO2 concentrations in CMIP6 models,” J. Geophys. Res.: Atmos. 125 (6), e2019JD032345 (2020).

  33. P. N. Vargin, Yu. V. Martynova, E. M. Volodin, and S. V. Kostrykin, “Investigation of Northern Hemisphere storm tracks,” Ekol. Ekon. Inf., Ser.: Sist. Anal. Model. Ekon. Ekol. Sist. 1 (4), 145–152 (2019).

    Google Scholar 

  34. P. N. Vargin, Yu. V. Martynova, E. M. Volodin, and S. V. Kostrykin, “Investigation of boreal storm tracks in historical simulations of INM CM5 and reanalysis data,” IOP Conf. Ser.: Earth Environ. Sci. 386, 012007 (2019).

  35. J. Willison, W. A. Robinson, and G. M. Lackmann, “North Atlantic storm-track sensitivity to warming increases with model resolution,” J. Clim. 28 (11), 4513–4524 (2015).

    Article  Google Scholar 

  36. M. D. Priestley, D. Ackerley, J. L. Catto, K. I. Hodges, R. E. McDonald, and R. W. Lee, “An overview of the extratropical storm tracks in CMIP6 historical simulations,” J. Clim. 33 (15), 6315–6343 (2020).

    Article  Google Scholar 

  37. https://esgf-node.llnl.gov/projects/cmip6/.

  38. J. Wallace, G. Lim, and M. Blackmon, “Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides,” J. Atmos. Sci. 45 (3), 439–462 (1988).

    Article  Google Scholar 

  39. V. Petoukhov, A. V. Eliseev, R. Klein, and H. Oesterle, “On statistics of the free-troposphere synoptic component: An evaluation of skewnesses and mixed third-order moments contribution to the synoptic-scale dynamics and fluxes of heat and humidity,” Tellus A: Dyn. Meteorol. Oceanogr. 60 (1), 11–31 (2008).

    Article  Google Scholar 

  40. S. V. Loginov, A. V. Eliseev, and I. I. Mokhov, “Impact of non-Gaussian statistics of atmospheric variables on extreme intramonth anomalies,” Izv., Atmos. Ocean. Phys. 53 (3), 269–278 (2017).

    Article  Google Scholar 

  41. C. I. Garfinkel and N. Harnik, “The non-Gaussianity and spatial asymmetry of temperature extremes relative to the storm track: The role of horizontal advection,” J. Clim. 30 (2), 445–464 (2017).

    Article  Google Scholar 

  42. G. K. Kanji, 100 Statistical Tests (SAGE Publications, London, 2006).

    Book  Google Scholar 

  43. T. Runde, M. Dameris, H. Garny, and D. Kinnison, “Classification of stratospheric extreme events according to their downward propagation to the troposphere,” Geophys. Res. Lett. 43, 6665–6672 (2016).

    Article  Google Scholar 

  44. P. N. Vargin, S. V. Kostrykin, and E. M. Volodin, “Analysis of simulation of stratosphere–troposphere dynamical coupling with the INM-CM5 climate model,” Russ. Meteorol. Hydrol. 43 (11), 780–786 (2018).

    Article  Google Scholar 

  45. P. N. Vargin, S. V. Kostrykin, E. M. Volodin, A. I. Pogoreltsev, and K. Wei, “Arctic stratosphere circulation changes in the 21st century in simulations of INM CM5,” Atmosphere 13 (1), 25 (2022).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the anonymous reviewer for valuable comments and suggestions.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-05-00370.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Martynova, P. N. Vargin or E. M. Volodin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Tretyakova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martynova, Y.V., Vargin, P.N. & Volodin, E.M. Variation of Northern Hemispheric Wintertime Storm Tracks under Future Climate Change in INM-CM5 Simulations. Izv. Atmos. Ocean. Phys. 58, 208–218 (2022). https://doi.org/10.1134/S0001433822030082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822030082

Keywords:

  • storm tracks
  • eddy moisture flux
  • extratropical cyclones
  • stratosphere–troposphere dynamic coupling
  • stratospheric polar vortex
  • climate modeling
  • INM-СМ5