Skip to main content

Variability of Surface Methane Concentration in Moscow at Different Time Scales

Abstract—

The variability of surface methane (СН4) concentration in Moscow at different time scales is analyzed using long-term regular measurements from the State Environmental Institution Mosecomonitoring (2005–2020). Possible mechanisms that form the methane-concentration field in the city’s atmosphere are discussed. The average concentration of methane in the urban surface layer during the cold half of the year is lower, the higher the average air temperature of the previous warm half-year. The lowest methane concentrations in Moscow in 2010 and 2011 are associated with the hot summer of 2010, which was accompanied by severe wildfires and partial dry-out of wetlands in central European Russia. The intra-annual variations in СН4 concentration exhibit minima in summer and maxima in winter. An additional maximum concentration in August–September is typical only of the night methane concentrations. In the diurnal cycle, there is a higher methane concentration in the air at night than during the day. The results demonstrate the complexity of multidirectional natural processes in the atmosphere and at the underlying surface that form a dynamically changing field of methane concentration in the surface air of a megacity.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. E. J. Dlugokencky, Trends in atmospheric methane. https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/.

  2. N. M. Bazhin, Methane in the Environment: Analytical Review (GPNTB SO RAN, 2010), vol. 93 [in Russian].

    Google Scholar 

  3. S. M. Semenov, I. L. Govor, and N. E. Uvarova, The Role of Methane in the Modern Climate Change (Moscow, 2018) [in Russian].

    Google Scholar 

  4. A. A. Kiselev and I. L. Karol’, Life with Methane (Gl. Geofiz. Obs. im. A.I. Voeikova, St. Petersburg, 2019) [in Russian].

  5. A. V. Dzyuba, A. V. Eliseev, and I. I. Mokhov, “Estimates of changes in the rate of methane sink from the atmosphere under climate warming,” Izv., Atmos. Ocean. Phys. 48 (3), 332–342 (2012).

    Article  Google Scholar 

  6. https://giovanni.gsfc.nasa.gov/giovanni/.

  7. W. Bader, B. Bovy, S. Conway, K. Strong, D. Smale, A. J. Turner, T. Blumenstock, C. Boone, M. C. Coen, A. Coulon, O. Garcia, D. W. T. Griffith, F. Hase, P. Hausmann, N. Jones, et al., “The recent increase of atmospheric methane from 10 years of ground based NDACC FTIR observations since 2005,” Atmos. Chem. Phys. 17 (3), 2255–2277 (2017). https://doi.org/10.5194/acp-17-2255-2017

    Article  Google Scholar 

  8. D. K. Arabadzhyan, N. N. Paramonova, M. V. Makarova, and A. V. Poberovskii, “Analysis of temporal variations in the atmospheric methane concentration according to ground-based observation,” Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim. 2 (3), 204–215 (2015).

    Google Scholar 

  9. M. V. Makarova, O. Kirner, Yu. M. Timofeev, et al., “Analysis of methane total column variations in the atmosphere near St. Petersburg using ground-based measurements and simulations (Part 1. General characteristics of the series),” Izv., Atmos. Ocean. Phys. 51 (2), 177–185 (2015).

    Article  Google Scholar 

  10. M. V. Makarova, O. Kirner, Yu. M. Timofeev, et al., “Analysis of methane total column variations in the atmosphere near St. Petersburg using ground-based measurements and simulations (Part 2. Annual course and long-term trend),” Izv., Atmos. Ocean. Phys. 51 (2), 177–185 (2015).

    Article  Google Scholar 

  11. Mosecomonitoring. https://mosecom.mos.ru/.

  12. A. A. Vinogradova, E. I. Fedorova, I. B. Belikov, A. S. Ginzburg, N. F. Elansky, and A. I. Skorokhod, “Temporal variations in carbon dioxide and methane concentrations under urban conditions,” Izv., Atmos. Ocean. Phys. 43 (5), 599–611 (2007).

    Article  Google Scholar 

  13. A. S. Ginzburg, A. A. Vinogradova, and E. I. Fedorova, “Some features of seasonal variations in the methane content in the atmosphere over Northern Eurasia,” Izv., Atmos. Ocean. Phys. 47 (1), 45–58 (2011).

    Article  Google Scholar 

  14. V. A. Isidorov, Volatile Effluents of Vegetation: The Composition, Emission Rate, and Ecological Role (Alga, St. Petersburg, 1994) [in Russian].

    Google Scholar 

  15. M. Cao, K. Gregson, and S. Marshall, “Global methane emission from wetlands and its sensitivity to climate change,” Atmos. Environ. 32 (19), 3293–3299 (1998).

    Article  Google Scholar 

  16. E. G. Nisbet, E. J. Dlugokencky, M. R. Manning, D. Lowry, R. E. Fisher, J. L. France, S. E. Michel, J. B. Miller, J. W. C. White, B. Vaughn, P. Bousquet, J. A. Pyle, N. J. Warwick, M. Cain, R. Brownlow, et al., “Rising atmospheric methane: 2007–2014 growth and isotopic shift,” Global Biogeochem. Cycles 30 (9), 1356–1370 (2016). https://doi.org/10.1002/2016GB005406

    Article  Google Scholar 

  17. S. E. Vomperskii, A. A. Sirin, A. A. Sal’nikov, O. P. Tsyganova, and N. A. Valyaeva, “Estimation of the area of wetland forests in Russia,” Lesovedenie, No. 5, 3–11 (2011).

    Google Scholar 

  18. A. A. Sirin, A. A. Maslov, N. A. Valyaeva, O. P. Tsyganova, and T. V. Glukhova, “Mapping of peatlands in the Moscow oblast based on high resolution remote sensing data,” Contemporary Probl. Ecol. 7 (7), 809815 (2014). https://doi.org/10.1134/S1995425514070117

    Article  Google Scholar 

  19. S. A. Sitnov, “Analysis of satellite observations of aerosol optical characteristics and gaseous admixtures in the atmosphere over the central regions of the Russian Federation during abnormally high summer temperatures and large fires in 2010,” Opt. Atmos. Okeana 24 (7), 572–581 (2011).

    Google Scholar 

  20. V. G. Bondur, I. I. Mokhov, O. S. Voronova, and S. A. Sitnov, “Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes,” Dokl. Earth Sci. 492 (1), 370–375 (2020).

    Article  Google Scholar 

  21. O. G. Grishutkin, “Impact of fires in 2010 on bog ecosystems of the Mordovian state reserve,” Tr. Mord. Gos. Prir. Zapov. im. P.G. Smidovicha, No. 10, 261–265 (2012) [in Russian].

    Google Scholar 

  22. Yearbook of Pollutant Emissions into the Atmosphere of Town and Regions of the Russian Federation for 2011, Ed. by A. Yu. Nedre (NII Atmosfera, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  23. Yearbook of Pollutant Emissions into the Atmosphere of Town and Regions of the Russian Federation for 2010, Ed. by A. Yu. Nedre (NII Atmosfera, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  24. H. A. Panofsky and G. W. Brier, Some Applications of Statistics to Meteorology (University park, State College, Pa., 1958; Gidrometeoizdat, Leningrad, 1972).

  25. Decree of the Chief Public Health Officer of the Russian Federation dated December 22, 2017, No. 165 On approval of hygiene standards GN 2.1.6.3492-17 “Maximum permissible concentrations (MPCs) of pollutants in the atmospheric air of urban and rural settlements” (as amended on May 31, 2018). http://publication.pravo. gov.ru/Document/View/0001201801090023.

  26. N. E. Chubarova, E. E. Androsova, and E. A. Lezina, “The dynamics of the atmospheric pollutants during the Covid-19 pandemic 2020 and their relationship with meteorological conditions in Moscow, Geogr. Environ. Sustainability 14 (4), 168–182 (2021). https://doi.org/10.24057/2071-9388-2021-012

    Article  Google Scholar 

  27. E. Yu. Bezuglaya, Meteorological Potential and Climatic Features of Urban Air Pollution (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  28. M. A. Lokoshchenko, “Temperature Stratification of the Lower Atmosphere over Moscow,” Russ. Meteorol. Hydrol. 32 (1), 35–42 (2007).

    Article  Google Scholar 

  29. M. A. Lokoshchenko, A. Yu. Bogdanovich, N. F. Elansky, and E. A. Lezina, “Thermal inversions and their influence on the composition of the surface air layer over Moscow,” Izv. Atmos. Ocean. Phys. 57 (6), 559–567 (2021).

    Article  Google Scholar 

  30. D. R. Feldman, W. D. Collins, S. C. Biraud, M. D. Risser, D. D. Turner, P. J. Gero, J. Tadić, D. Helmig, S. Xie, E. J. Mlawer, T. R Shippert, and M. S. Torn, “Observationally derived rise in methane surface forcing mediated by water vapour trends,” Nat. Geosci. 11, 238–243 (2018). https://doi.org/10.1038/s41561-018-0085-9

    Article  Google Scholar 

  31. A. A. Vinogradova, A. S. Ginzburg, and D. P. Gubanova, “Variability of methane concentration in the surface air of Moscow in the cold half-year periods of 2005–2020,” in Proceedings of the International Symposium “Atmospheric Radiation and Dynamics” (ISARD-2021) (St. Petersburg, 2021), pp. 84–86 [in Russian].

Download references

ACKNOWLEDGMENTS

We thank the anonymous reviewer for helpful comments and suggestions.

Funding

The study was done with the support of a state assignment to the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The data analysis was supported by the Russian Foundation for Basic Research, project no. 20-05-00254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vinogradova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Tretyakova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, A.A., Ginzburg, A.S. & Gubanova, D.P. Variability of Surface Methane Concentration in Moscow at Different Time Scales. Izv. Atmos. Ocean. Phys. 58, 178–187 (2022). https://doi.org/10.1134/S0001433822020116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822020116

Keywords:

  • atmospheric air
  • Moscow
  • methane
  • temporal variability
  • sources and sinks
  • meteorological parameters