E. J. Dlugokencky, Trends in atmospheric methane. https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/.
N. M. Bazhin, Methane in the Environment: Analytical Review (GPNTB SO RAN, 2010), vol. 93 [in Russian].
Google Scholar
S. M. Semenov, I. L. Govor, and N. E. Uvarova, The Role of Methane in the Modern Climate Change (Moscow, 2018) [in Russian].
Google Scholar
A. A. Kiselev and I. L. Karol’, Life with Methane (Gl. Geofiz. Obs. im. A.I. Voeikova, St. Petersburg, 2019) [in Russian].
A. V. Dzyuba, A. V. Eliseev, and I. I. Mokhov, “Estimates of changes in the rate of methane sink from the atmosphere under climate warming,” Izv., Atmos. Ocean. Phys. 48 (3), 332–342 (2012).
Article
Google Scholar
https://giovanni.gsfc.nasa.gov/giovanni/.
W. Bader, B. Bovy, S. Conway, K. Strong, D. Smale, A. J. Turner, T. Blumenstock, C. Boone, M. C. Coen, A. Coulon, O. Garcia, D. W. T. Griffith, F. Hase, P. Hausmann, N. Jones, et al., “The recent increase of atmospheric methane from 10 years of ground based NDACC FTIR observations since 2005,” Atmos. Chem. Phys. 17 (3), 2255–2277 (2017). https://doi.org/10.5194/acp-17-2255-2017
Article
Google Scholar
D. K. Arabadzhyan, N. N. Paramonova, M. V. Makarova, and A. V. Poberovskii, “Analysis of temporal variations in the atmospheric methane concentration according to ground-based observation,” Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim. 2 (3), 204–215 (2015).
Google Scholar
M. V. Makarova, O. Kirner, Yu. M. Timofeev, et al., “Analysis of methane total column variations in the atmosphere near St. Petersburg using ground-based measurements and simulations (Part 1. General characteristics of the series),” Izv., Atmos. Ocean. Phys. 51 (2), 177–185 (2015).
Article
Google Scholar
M. V. Makarova, O. Kirner, Yu. M. Timofeev, et al., “Analysis of methane total column variations in the atmosphere near St. Petersburg using ground-based measurements and simulations (Part 2. Annual course and long-term trend),” Izv., Atmos. Ocean. Phys. 51 (2), 177–185 (2015).
Article
Google Scholar
Mosecomonitoring. https://mosecom.mos.ru/.
A. A. Vinogradova, E. I. Fedorova, I. B. Belikov, A. S. Ginzburg, N. F. Elansky, and A. I. Skorokhod, “Temporal variations in carbon dioxide and methane concentrations under urban conditions,” Izv., Atmos. Ocean. Phys. 43 (5), 599–611 (2007).
Article
Google Scholar
A. S. Ginzburg, A. A. Vinogradova, and E. I. Fedorova, “Some features of seasonal variations in the methane content in the atmosphere over Northern Eurasia,” Izv., Atmos. Ocean. Phys. 47 (1), 45–58 (2011).
Article
Google Scholar
V. A. Isidorov, Volatile Effluents of Vegetation: The Composition, Emission Rate, and Ecological Role (Alga, St. Petersburg, 1994) [in Russian].
Google Scholar
M. Cao, K. Gregson, and S. Marshall, “Global methane emission from wetlands and its sensitivity to climate change,” Atmos. Environ. 32 (19), 3293–3299 (1998).
Article
Google Scholar
E. G. Nisbet, E. J. Dlugokencky, M. R. Manning, D. Lowry, R. E. Fisher, J. L. France, S. E. Michel, J. B. Miller, J. W. C. White, B. Vaughn, P. Bousquet, J. A. Pyle, N. J. Warwick, M. Cain, R. Brownlow, et al., “Rising atmospheric methane: 2007–2014 growth and isotopic shift,” Global Biogeochem. Cycles 30 (9), 1356–1370 (2016). https://doi.org/10.1002/2016GB005406
Article
Google Scholar
S. E. Vomperskii, A. A. Sirin, A. A. Sal’nikov, O. P. Tsyganova, and N. A. Valyaeva, “Estimation of the area of wetland forests in Russia,” Lesovedenie, No. 5, 3–11 (2011).
Google Scholar
A. A. Sirin, A. A. Maslov, N. A. Valyaeva, O. P. Tsyganova, and T. V. Glukhova, “Mapping of peatlands in the Moscow oblast based on high resolution remote sensing data,” Contemporary Probl. Ecol. 7 (7), 809815 (2014). https://doi.org/10.1134/S1995425514070117
Article
Google Scholar
S. A. Sitnov, “Analysis of satellite observations of aerosol optical characteristics and gaseous admixtures in the atmosphere over the central regions of the Russian Federation during abnormally high summer temperatures and large fires in 2010,” Opt. Atmos. Okeana 24 (7), 572–581 (2011).
Google Scholar
V. G. Bondur, I. I. Mokhov, O. S. Voronova, and S. A. Sitnov, “Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes,” Dokl. Earth Sci. 492 (1), 370–375 (2020).
Article
Google Scholar
O. G. Grishutkin, “Impact of fires in 2010 on bog ecosystems of the Mordovian state reserve,” Tr. Mord. Gos. Prir. Zapov. im. P.G. Smidovicha, No. 10, 261–265 (2012) [in Russian].
Google Scholar
Yearbook of Pollutant Emissions into the Atmosphere of Town and Regions of the Russian Federation for 2011, Ed. by A. Yu. Nedre (NII Atmosfera, St. Petersburg, 2013) [in Russian].
Google Scholar
Yearbook of Pollutant Emissions into the Atmosphere of Town and Regions of the Russian Federation for 2010, Ed. by A. Yu. Nedre (NII Atmosfera, St. Petersburg, 2011) [in Russian].
Google Scholar
H. A. Panofsky and G. W. Brier, Some Applications of Statistics to Meteorology (University park, State College, Pa., 1958; Gidrometeoizdat, Leningrad, 1972).
Decree of the Chief Public Health Officer of the Russian Federation dated December 22, 2017, No. 165 On approval of hygiene standards GN 2.1.6.3492-17 “Maximum permissible concentrations (MPCs) of pollutants in the atmospheric air of urban and rural settlements” (as amended on May 31, 2018). http://publication.pravo. gov.ru/Document/View/0001201801090023.
N. E. Chubarova, E. E. Androsova, and E. A. Lezina, “The dynamics of the atmospheric pollutants during the Covid-19 pandemic 2020 and their relationship with meteorological conditions in Moscow, Geogr. Environ. Sustainability 14 (4), 168–182 (2021). https://doi.org/10.24057/2071-9388-2021-012
Article
Google Scholar
E. Yu. Bezuglaya, Meteorological Potential and Climatic Features of Urban Air Pollution (Gidrometeoizdat, Leningrad, 1980) [in Russian].
Google Scholar
M. A. Lokoshchenko, “Temperature Stratification of the Lower Atmosphere over Moscow,” Russ. Meteorol. Hydrol. 32 (1), 35–42 (2007).
Article
Google Scholar
M. A. Lokoshchenko, A. Yu. Bogdanovich, N. F. Elansky, and E. A. Lezina, “Thermal inversions and their influence on the composition of the surface air layer over Moscow,” Izv. Atmos. Ocean. Phys. 57 (6), 559–567 (2021).
Article
Google Scholar
D. R. Feldman, W. D. Collins, S. C. Biraud, M. D. Risser, D. D. Turner, P. J. Gero, J. Tadić, D. Helmig, S. Xie, E. J. Mlawer, T. R Shippert, and M. S. Torn, “Observationally derived rise in methane surface forcing mediated by water vapour trends,” Nat. Geosci. 11, 238–243 (2018). https://doi.org/10.1038/s41561-018-0085-9
Article
Google Scholar
A. A. Vinogradova, A. S. Ginzburg, and D. P. Gubanova, “Variability of methane concentration in the surface air of Moscow in the cold half-year periods of 2005–2020,” in Proceedings of the International Symposium “Atmospheric Radiation and Dynamics” (ISARD-2021) (St. Petersburg, 2021), pp. 84–86 [in Russian].