Skip to main content

Igor’ Leonidovich Karol’: 70 Years in Science

Abstract

The contribution of Igor’ Leonidovich Karol’ to world and national science is described. Three stages of his scientific research are identified: (1) modeling of the dynamics of the atmosphere, (2) modeling of chemical and radiation processes in the atmosphere, and (3) modeling of modern climate changes. Attention is paid to the pedagogical work of Karol’ and his contribution to the popularization of science.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. S. G. Malakhov and I. L. Karol’, “Global atmospheric distribution and deposition of radioactive products of nuclear explosions,” in Radioactive Isotopes in the Atmosphere (Atomizdat, Moscow, 1965) [in Russian].

    Google Scholar 

  2. M. A. Petrosyants, S. G. Malakhov, I. L. Karol’, and Yu. V. Krasnopevtsev, “Radioactive tracers in studies of global atmospheric processes,” Meteorol. Gidrol., No. 4 (1970).

  3. I. L. Karol, “Numerical model of the global transport of radioactive tracers from the instantaneous sources in the lower stratosphere,” J. Geophys. Res. 75 (18), 3589–3603 (1970).

    Article  Google Scholar 

  4. I. L. Karol’, Radioactive Isotopes and Global Transport in the Atmosphere (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  5. I. L. Karol, Radioisotopes and Global Transport in the Atmosphere (Israel Program for Scientific Translations, 1974).

    Google Scholar 

  6. P. J. Crutzen, “The influence of nitrogen oxides on the atmospheric ozone content,” Q. J. R. Meteorol. Soc. 96 (408), 320–325 (1970).

    Article  Google Scholar 

  7. H. S. Johnston, “Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust,” Science 173 (3996), 517–522 (1971).

    Article  Google Scholar 

  8. P. J. Crutzen, “SST’s: A threat to the Earth’s ozone shield,” Ambio 1 (2), 41–51 (1972).

    Google Scholar 

  9. M. Molina and F. S. Rowland, “Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalyzed destruction of ozone,” Nature 249, 810–812 (1974). https://doi.org/10.1038/249810a0

    Article  Google Scholar 

  10. Radiative–Photochemical Models of the Atmosphere, Ed. by I. L. Karol’ (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  11. I. L. Karol’ and A. A. Kiselev, “Photochemical models of the atmosphere and their application in ozonosphere and climate studies: A review,” Izv., Atmos. Ocean. Phys. 42 (1), 1–31 (2006).

    Article  Google Scholar 

  12. I. L. Karol, Y. E. Ozolin, E. V. Rozanov, and A. A. Kiselev, “Plume Transformation Index (PTI) of the subsonic aircraft exhausts and their dependence on the external conditions,” Geophys. Res. Lett. 27 (3), 373–376 (2000).

    Article  Google Scholar 

  13. I. L. Karol, Y. E. Ozolin, and E. V. Rozanov, “Effect of space rocket launches on ozone,” Ann. Geophys. 10, 810–814 (1992).

    Google Scholar 

  14. V. A. Zubov, I. L. Karol, E. V. Rozanov, and Y. E. Ozolin, “The zonally-averaged model of the photochemical, radiative and dynamical processes in the troposphere and stratosphere. Part 1: The description of the model and model validation,” Fiz. Atmos. Okeana 31 (4), 4697–4706 (1995).

    Google Scholar 

  15. I. L. Karol, V. A. Zubov, E. V. Rozanov, Ch. Brühl, and A. Zieger, “Model reconstruction of seasonal and latitudinal variations in the transport and composition of minor gases and temperature of the stratosphere in the preindustrial and recent glacial periods,” Dokl. Earth Sci. 357 (8), 1222–1226 (1997).

    Google Scholar 

  16. I. L. Karol, A. A. Kiselev, and V. A. Frolkis, “Radiative–photochemical modeling of the annually averaged composition and temperature of the global atmosphere during the last glacial and interglacial periods,” J. Geophys. Res. 100 (D4), 7291–7301 (1995).

    Article  Google Scholar 

  17. T. A. Egorova, E. V. Rozanov, V. A. Zubov, and I. L. Karol, “Model for Investigating Ozone Trends (MEZON),” Izv., Atmos. Ocean. Phys. 39 (3), 277–292 (2003).

    Google Scholar 

  18. A. A. Kiselev and I. L. Karol’, “How are you, Antarctic ozone hole?,” Priroda, No. 10, 3–8 (2016).

    Google Scholar 

  19. T. Sukhodolov, T. Egorova, A. Stenke, W. T. Ball, C. Brodowsky, G. Chiodo, A. Feinberg, M. Friedel, A. Karagodin-Doyennel, T. Peter, J. Sedlacek, S. Vattioni, and E. Rozanov, “Atmosphere–ocean–aerosol–chemistry–climate model SOCOL v4.0: Description and evaluation,” Geosci. Model Dev. 14, 5525–5560 (2021). https://doi.org/10.5194/gmd-14-5525-2021

    Article  Google Scholar 

  20. V. A. Zubov, E. V. Rozanov, I. V. Rozanova, T. A. Egorova, A. A. Kiselev, I. L. Karol’, and V. Schmutz, “Simulation of changes in global ozone and atmospheric dynamics in the 21st century with the chemistry-climate model SOCOL,” Izv., Atmos. Ocean. Phys. 47 (3), 301–312 (2011).

    Article  Google Scholar 

  21. V. Zubov, T. Egorova, E. Rozanov, I. Karol, and W. Schmutz, “Role of external factors in the evolution of the ozone layer and stratospheric circulation in 21st century,” Atmos. Chem. Phys. 13, 4697–4706. https://www.atmos-chem-phys.net/13/4697/2013/doi: 10.5194/acp-13-4697-2013.

  22. I. L. Karol and A. A. Kiselev, “Modeling of the tropospheric carbon monoxide distribution in the northern temperate belt,” Chemosphere: Global Change Sci. 1 (3), 283–300 (1999).

    Google Scholar 

  23. A. A. Kiselev and I. L. Karol, “Modeling of the long term tropospheric trends of hydroxyl radical for the Northern Hemisphere,” Atmos. Environ. 34 (29-30), 5271–5282 (2000).

    Article  Google Scholar 

  24. A. A. Kiselev and I. L. Karol, “The ratio between nitrogen oxides and carbon monoxide total emissions as precursors of tropospheric hydroxyl content evolution,” Atmos. Environ. 36 (39), 5971–5981 (2002).

    Article  Google Scholar 

  25. I. L. Karol’, M. A. Zatevakhin, N. A. Ozhigina, Yu. E. Ozolin, R. Ramaroson, E. V. Rozanov, and E. N. Stankova, “Numerical model for convective cloud dynamics, microphysics, and photochemistry,” Izv., Atmos. Ocean. Phys. 36 (6), 715–729 (2000).

    Google Scholar 

  26. Yu. A. Izrael’, I. L. Karol’, A. A. Kiselev, and E. V. Rozanov, “Simulation of changes in the gas composition and temperature in the atmosphere caused by a possible nuclear war,” Dokl. Akad. Nauk SSSR 301 (2), 310–313 (1988).

    Google Scholar 

  27. Yu. E. Ozolin, I. L. Karol’, E. V. Rozanov, and T. A. Egorova, “A Model of the Impact of Solar Proton Events on the Ionic and Gaseous Composition of the Mesosphere,” Izv., Atmos. Ocean. Phys. 45 (6), 737–750 (2009).

    Article  Google Scholar 

  28. Y. Ozolin, I. Karol, E. Rozanov, and T. Egorova, “A model of the impact of solar proton events on the ionic and gaseous composition of the mesosphere,” Izv., Atmos. Ocean. Phys. 45 (6), 737–750, (2009). https://doi.org/10.1134/S0001433809060073

  29. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (Cambridge University Press, 2021). https://www.ipcc.ch/report/ar6/wg1/downloads/ report/IPCC_AR6_WGI_Full_Report.pdf.

    Google Scholar 

  30. V. A. Frolkis, I. L. Karol, and A. A. Kiselev, “Global warming potential, global warming commitment and other indexes as characteristics of the effects of greenhouse gases on Earth’s climate,” Ecol. Indic. 2 (1–2), 109–121 (2002).

    Article  Google Scholar 

  31. V. A. Frol’kis and I. L. Karol’, “Simulation of the effect of stratospheric aerosol dimming parameters on the efficiency of offsetting global greenhouse climate warming,” Atmos. Oceanic Opt. 23 (8), 74–87 (2011).

    Article  Google Scholar 

  32. A. A. Kiselev and I. L. Karol’, “Response of tropospheric gas composition in northern midlatitudes to a possible methane outbreak from the Earth’s subsoil to the atmosphere,” Izv., Atmos. Ocean. Phys. 39 (5), 521–529 (2003).

    Google Scholar 

  33. A. A. Kiselev and I. L. Karol’, “Possible consequences of methane release from permafrost in Russia,” in Current Problems in Ecological Meteorology and Climatology, Ed. by G. V. Menzhulin (Nauka, St. Petersburg, 2005), pp. 102–113 [in Russian].

    Google Scholar 

  34. S. Jagovkina, I. Karol, V. Zubov, V. Lagun, A. Reshetnikov, and E. Rozanov, “Reconstruction of the methane fluxes from the West Siberia gas fields by the 3D regional chemical transport model,” Atmos. Environ. 34 (24), 4317–4325 (2000).

    Article  Google Scholar 

  35. A. I. Reshetnikov, A. V. Zinchenko, S. V. Yagovkina, I. L. Karol, V. E. Lagun, and N. N. Paramonova, “Studying methane emission in the north of Western Siberia,” Russ. Meteorol. Hydrol. 34 (3), 171–179 (2009).

    Article  Google Scholar 

  36. V. M. Ivakhov, I. L. Karol’, A. A. Kiselev, A. V. Zinchenko, N. N. Paramonova, V. I. Privalov, T. Laurila, and M. Aurela, “Results of first chamber measurements of methane fluxes at the Tiksi hydrometeorological observatory,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 576, 27–41 (2015).

    Google Scholar 

  37. V. M. Ivakhov, I. L. Karol’, A. A. Kiselev, A. V. Zinchenko, N. N. Paramonova, V. I. Privalov, E. S. Semenets, and V. Yu. Polishchuk, “Observations over atmospheric methane concentrations and fluxes in Novyi Port (Yamal),” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 596, 78–95 (2020).

    Google Scholar 

  38. I. L. Karol’, N. A. Ozhigina, E. V. Rozanov, and V. A. Frol’kis, “Model assessments of possible climatic consequences of large fires in Kuwait oil fields,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 28 (8), 819–827 (1992).

    Google Scholar 

  39. A. A. Kiselev, I. L. Karol’, and V. A. Frol’kis, “Simulation of atmospheric consequences of recent large-scale fires in Siberia and the Far East,” in Proceedings of Int. Conf. “Ecological Chemistry” (Moldova, Chisinau), 2005, pp. 393–400 [in Russian].

  40. V. Kattsov, E. Källén, H. Cattle, J. Christensen, H. Drange, I. Hanssen-Bauer, T. Jóhannesen, I. Karol, J. Raisanen, G. Svensson, and S. Vavulin, “Future climate change: Modeling and scenarios for the Arctic,” in Arctic Climate Impact Assessment (ACIA) (University Press, Cambridge, 2005), pp. 99–150.

    Google Scholar 

  41. I. L. Karol’, A. A. Kiselev, E. L. Genikhovich, and S. S. Chicherin, “Reduction of short-lived atmospheric pollutant emissions as an alternative strategy for climate-change moderation,” Izv., Atmos. Ocean. Phys. 49 (5), 461–478 (2013).

    Article  Google Scholar 

  42. I. L. Karol’, Introduction to the Earth’s Climate Dynamics (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  43. I. L. Karol’, “The present and future of atmospheric ozone,” Priroda, No. 9, 10–19 (1988).

    Google Scholar 

  44. A. D. Danilov and I. L. Karol’, Atmospheric Ozone: Sensations and Reality (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  45. I. L. Karol’, The Ozone Shield of the Earth and Humans (Znanie Rossii, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  46. I. L. Karol’ and A. A. Kiselev, “The Earth’s ozonosphere is in danger,” Ekol. Zhizn, No. 1, 19–25 (1996).

    Google Scholar 

  47. E. L. Aleksandrov, I. L. Karol’, L. R. Rakipova, Yu. S. Sedunov, and A. Kh. Khrgian, Atmospheric Ozone and Global Climate Changes (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  48. E. L. Aleksandrov, Yu. A. Izrael’, I. L. Karol’, and A. Kh. Khrgian, The Earth’s Ozone Shield and Its Changes (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  49. I. L. Karol’, V. V. Rozanov, and Yu. M. Timofeev, Gaseous Admixtures in the Atmosphere (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  50. World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1991, WMO Global Ozone Research and Monitoring Project, Report No. 25, Geneva, 1992.

  51. World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1994, WMO Global Ozone Research and Monitoring Project, Report No. 37, Geneva, 1995.

  52. Aviation and the Global Atmosphere (IPCC, 1999), Ed. by J. E. Penner, D. H. Lister, D. J. Griggs, D. J. Dokken, and M. McFarland (Cambridge University Press, UK, 1999).

    Google Scholar 

  53. I. L. Karol’ and A. A. Kiselev, “Atmospheric methane and the global climate,” Priroda, No. 7, 47–52 (2004).

    Google Scholar 

  54. A. A. Kiselev and I. L. Karol’, “Once again about methane,” Priroda, No. 11, 9–17 (2004).

    Google Scholar 

  55. A. A. Kiselev and I. L. Karol’, Life with Methane (Rosgidromet, St. Petersburg, 2019) [in Russian].

    Google Scholar 

  56. I. L. Karol’, High-Altitude Aircrafts and the Stratosphere (Gidrometeoizdat, Leningrad, 2974) [in Russian].

  57. I. L. Karol’ and A. A. Kiselev, “Whether should Boeing and Tu be replaced by flying carpets?,” Priroda, No. 5, 60–66 (2001).

    Google Scholar 

  58. I. L. Karol’, Climatic Consequences of Nuclear War (Znanie, Leningrad, 1987) [in Russian].

    Google Scholar 

  59. I. L. Karol’ and A. A. Kiselev, “What do forest fires carry to the atmosphere,” Priroda, No. 5, 40–46 (2007).

    Google Scholar 

  60. I. L. Karol’ and A. A. Kiselev, “The territory in the Earth’s edge: the Arctic and its climate,” Ross. Polyarn. Issled., No. 2, 19–23 (2016).

  61. I. L. Karol’ and A. A. Kiselev, “Russia—Terra cognita. The Russian climate today,” Geogr. Ekol. Shkole XXI Veka, No. 6, 6–14 (2019).

    Google Scholar 

  62. A. A. Kiselev and I. L. Karol’, “Series of weather anomalies: Randomness or regularity?,” Priroda, No. 7, 10–16 (2017).

    Google Scholar 

  63. A. A. Kiselev and I. L. Karol’, “Whether can the Parisian “cure” help the climate," Priroda, No. 1, 14–21 (2017).

    Google Scholar 

  64. I. L. Karol’ and A. A. Kiselev, “Climate model: An instrument or a toy?,” Priroda, No. 5, 25–31 (2017).

    Google Scholar 

  65. I. L. Karol’ and A. A. Kiselev, Climate Paradoxes (AST-press, Moscow, 2013) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Rozanov or S. P. Smyshlyaev.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiselev, A.A., Rozanov, E.V., Frolkis, V.A. et al. Igor’ Leonidovich Karol’: 70 Years in Science. Izv. Atmos. Ocean. Phys. 58, 111–120 (2022). https://doi.org/10.1134/S0001433822020050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822020050

Keywords:

  • mathematical modeling
  • atmospheric chemistry and dynamics
  • ozonosphere
  • climate change