S. G. Malakhov and I. L. Karol’, “Global atmospheric distribution and deposition of radioactive products of nuclear explosions,” in Radioactive Isotopes in the Atmosphere (Atomizdat, Moscow, 1965) [in Russian].
Google Scholar
M. A. Petrosyants, S. G. Malakhov, I. L. Karol’, and Yu. V. Krasnopevtsev, “Radioactive tracers in studies of global atmospheric processes,” Meteorol. Gidrol., No. 4 (1970).
I. L. Karol, “Numerical model of the global transport of radioactive tracers from the instantaneous sources in the lower stratosphere,” J. Geophys. Res. 75 (18), 3589–3603 (1970).
Article
Google Scholar
I. L. Karol’, Radioactive Isotopes and Global Transport in the Atmosphere (Gidrometeoizdat, Leningrad, 1972) [in Russian].
Google Scholar
I. L. Karol, Radioisotopes and Global Transport in the Atmosphere (Israel Program for Scientific Translations, 1974).
Google Scholar
P. J. Crutzen, “The influence of nitrogen oxides on the atmospheric ozone content,” Q. J. R. Meteorol. Soc. 96 (408), 320–325 (1970).
Article
Google Scholar
H. S. Johnston, “Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust,” Science 173 (3996), 517–522 (1971).
Article
Google Scholar
P. J. Crutzen, “SST’s: A threat to the Earth’s ozone shield,” Ambio 1 (2), 41–51 (1972).
Google Scholar
M. Molina and F. S. Rowland, “Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalyzed destruction of ozone,” Nature 249, 810–812 (1974). https://doi.org/10.1038/249810a0
Article
Google Scholar
Radiative–Photochemical Models of the Atmosphere, Ed. by I. L. Karol’ (Gidrometeoizdat, Leningrad, 1986) [in Russian].
Google Scholar
I. L. Karol’ and A. A. Kiselev, “Photochemical models of the atmosphere and their application in ozonosphere and climate studies: A review,” Izv., Atmos. Ocean. Phys. 42 (1), 1–31 (2006).
Article
Google Scholar
I. L. Karol, Y. E. Ozolin, E. V. Rozanov, and A. A. Kiselev, “Plume Transformation Index (PTI) of the subsonic aircraft exhausts and their dependence on the external conditions,” Geophys. Res. Lett. 27 (3), 373–376 (2000).
Article
Google Scholar
I. L. Karol, Y. E. Ozolin, and E. V. Rozanov, “Effect of space rocket launches on ozone,” Ann. Geophys. 10, 810–814 (1992).
Google Scholar
V. A. Zubov, I. L. Karol, E. V. Rozanov, and Y. E. Ozolin, “The zonally-averaged model of the photochemical, radiative and dynamical processes in the troposphere and stratosphere. Part 1: The description of the model and model validation,” Fiz. Atmos. Okeana 31 (4), 4697–4706 (1995).
Google Scholar
I. L. Karol, V. A. Zubov, E. V. Rozanov, Ch. Brühl, and A. Zieger, “Model reconstruction of seasonal and latitudinal variations in the transport and composition of minor gases and temperature of the stratosphere in the preindustrial and recent glacial periods,” Dokl. Earth Sci. 357 (8), 1222–1226 (1997).
Google Scholar
I. L. Karol, A. A. Kiselev, and V. A. Frolkis, “Radiative–photochemical modeling of the annually averaged composition and temperature of the global atmosphere during the last glacial and interglacial periods,” J. Geophys. Res. 100 (D4), 7291–7301 (1995).
Article
Google Scholar
T. A. Egorova, E. V. Rozanov, V. A. Zubov, and I. L. Karol, “Model for Investigating Ozone Trends (MEZON),” Izv., Atmos. Ocean. Phys. 39 (3), 277–292 (2003).
Google Scholar
A. A. Kiselev and I. L. Karol’, “How are you, Antarctic ozone hole?,” Priroda, No. 10, 3–8 (2016).
Google Scholar
T. Sukhodolov, T. Egorova, A. Stenke, W. T. Ball, C. Brodowsky, G. Chiodo, A. Feinberg, M. Friedel, A. Karagodin-Doyennel, T. Peter, J. Sedlacek, S. Vattioni, and E. Rozanov, “Atmosphere–ocean–aerosol–chemistry–climate model SOCOL v4.0: Description and evaluation,” Geosci. Model Dev. 14, 5525–5560 (2021). https://doi.org/10.5194/gmd-14-5525-2021
Article
Google Scholar
V. A. Zubov, E. V. Rozanov, I. V. Rozanova, T. A. Egorova, A. A. Kiselev, I. L. Karol’, and V. Schmutz, “Simulation of changes in global ozone and atmospheric dynamics in the 21st century with the chemistry-climate model SOCOL,” Izv., Atmos. Ocean. Phys. 47 (3), 301–312 (2011).
Article
Google Scholar
V. Zubov, T. Egorova, E. Rozanov, I. Karol, and W. Schmutz, “Role of external factors in the evolution of the ozone layer and stratospheric circulation in 21st century,” Atmos. Chem. Phys. 13, 4697–4706. https://www.atmos-chem-phys.net/13/4697/2013/doi: 10.5194/acp-13-4697-2013.
I. L. Karol and A. A. Kiselev, “Modeling of the tropospheric carbon monoxide distribution in the northern temperate belt,” Chemosphere: Global Change Sci. 1 (3), 283–300 (1999).
Google Scholar
A. A. Kiselev and I. L. Karol, “Modeling of the long term tropospheric trends of hydroxyl radical for the Northern Hemisphere,” Atmos. Environ. 34 (29-30), 5271–5282 (2000).
Article
Google Scholar
A. A. Kiselev and I. L. Karol, “The ratio between nitrogen oxides and carbon monoxide total emissions as precursors of tropospheric hydroxyl content evolution,” Atmos. Environ. 36 (39), 5971–5981 (2002).
Article
Google Scholar
I. L. Karol’, M. A. Zatevakhin, N. A. Ozhigina, Yu. E. Ozolin, R. Ramaroson, E. V. Rozanov, and E. N. Stankova, “Numerical model for convective cloud dynamics, microphysics, and photochemistry,” Izv., Atmos. Ocean. Phys. 36 (6), 715–729 (2000).
Google Scholar
Yu. A. Izrael’, I. L. Karol’, A. A. Kiselev, and E. V. Rozanov, “Simulation of changes in the gas composition and temperature in the atmosphere caused by a possible nuclear war,” Dokl. Akad. Nauk SSSR 301 (2), 310–313 (1988).
Google Scholar
Yu. E. Ozolin, I. L. Karol’, E. V. Rozanov, and T. A. Egorova, “A Model of the Impact of Solar Proton Events on the Ionic and Gaseous Composition of the Mesosphere,” Izv., Atmos. Ocean. Phys. 45 (6), 737–750 (2009).
Article
Google Scholar
Y. Ozolin, I. Karol, E. Rozanov, and T. Egorova, “A model of the impact of solar proton events on the ionic and gaseous composition of the mesosphere,” Izv., Atmos. Ocean. Phys. 45 (6), 737–750, (2009). https://doi.org/10.1134/S0001433809060073
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (Cambridge University Press, 2021). https://www.ipcc.ch/report/ar6/wg1/downloads/ report/IPCC_AR6_WGI_Full_Report.pdf.
Google Scholar
V. A. Frolkis, I. L. Karol, and A. A. Kiselev, “Global warming potential, global warming commitment and other indexes as characteristics of the effects of greenhouse gases on Earth’s climate,” Ecol. Indic. 2 (1–2), 109–121 (2002).
Article
Google Scholar
V. A. Frol’kis and I. L. Karol’, “Simulation of the effect of stratospheric aerosol dimming parameters on the efficiency of offsetting global greenhouse climate warming,” Atmos. Oceanic Opt. 23 (8), 74–87 (2011).
Article
Google Scholar
A. A. Kiselev and I. L. Karol’, “Response of tropospheric gas composition in northern midlatitudes to a possible methane outbreak from the Earth’s subsoil to the atmosphere,” Izv., Atmos. Ocean. Phys. 39 (5), 521–529 (2003).
Google Scholar
A. A. Kiselev and I. L. Karol’, “Possible consequences of methane release from permafrost in Russia,” in Current Problems in Ecological Meteorology and Climatology, Ed. by G. V. Menzhulin (Nauka, St. Petersburg, 2005), pp. 102–113 [in Russian].
Google Scholar
S. Jagovkina, I. Karol, V. Zubov, V. Lagun, A. Reshetnikov, and E. Rozanov, “Reconstruction of the methane fluxes from the West Siberia gas fields by the 3D regional chemical transport model,” Atmos. Environ. 34 (24), 4317–4325 (2000).
Article
Google Scholar
A. I. Reshetnikov, A. V. Zinchenko, S. V. Yagovkina, I. L. Karol, V. E. Lagun, and N. N. Paramonova, “Studying methane emission in the north of Western Siberia,” Russ. Meteorol. Hydrol. 34 (3), 171–179 (2009).
Article
Google Scholar
V. M. Ivakhov, I. L. Karol’, A. A. Kiselev, A. V. Zinchenko, N. N. Paramonova, V. I. Privalov, T. Laurila, and M. Aurela, “Results of first chamber measurements of methane fluxes at the Tiksi hydrometeorological observatory,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 576, 27–41 (2015).
Google Scholar
V. M. Ivakhov, I. L. Karol’, A. A. Kiselev, A. V. Zinchenko, N. N. Paramonova, V. I. Privalov, E. S. Semenets, and V. Yu. Polishchuk, “Observations over atmospheric methane concentrations and fluxes in Novyi Port (Yamal),” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 596, 78–95 (2020).
Google Scholar
I. L. Karol’, N. A. Ozhigina, E. V. Rozanov, and V. A. Frol’kis, “Model assessments of possible climatic consequences of large fires in Kuwait oil fields,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 28 (8), 819–827 (1992).
Google Scholar
A. A. Kiselev, I. L. Karol’, and V. A. Frol’kis, “Simulation of atmospheric consequences of recent large-scale fires in Siberia and the Far East,” in Proceedings of Int. Conf. “Ecological Chemistry” (Moldova, Chisinau), 2005, pp. 393–400 [in Russian].
V. Kattsov, E. Källén, H. Cattle, J. Christensen, H. Drange, I. Hanssen-Bauer, T. Jóhannesen, I. Karol, J. Raisanen, G. Svensson, and S. Vavulin, “Future climate change: Modeling and scenarios for the Arctic,” in Arctic Climate Impact Assessment (ACIA) (University Press, Cambridge, 2005), pp. 99–150.
Google Scholar
I. L. Karol’, A. A. Kiselev, E. L. Genikhovich, and S. S. Chicherin, “Reduction of short-lived atmospheric pollutant emissions as an alternative strategy for climate-change moderation,” Izv., Atmos. Ocean. Phys. 49 (5), 461–478 (2013).
Article
Google Scholar
I. L. Karol’, Introduction to the Earth’s Climate Dynamics (Gidrometeoizdat, Leningrad, 1988) [in Russian].
Google Scholar
I. L. Karol’, “The present and future of atmospheric ozone,” Priroda, No. 9, 10–19 (1988).
Google Scholar
A. D. Danilov and I. L. Karol’, Atmospheric Ozone: Sensations and Reality (Gidrometeoizdat, Leningrad, 1991) [in Russian].
Google Scholar
I. L. Karol’, The Ozone Shield of the Earth and Humans (Znanie Rossii, St. Petersburg, 1992) [in Russian].
Google Scholar
I. L. Karol’ and A. A. Kiselev, “The Earth’s ozonosphere is in danger,” Ekol. Zhizn, No. 1, 19–25 (1996).
Google Scholar
E. L. Aleksandrov, I. L. Karol’, L. R. Rakipova, Yu. S. Sedunov, and A. Kh. Khrgian, Atmospheric Ozone and Global Climate Changes (Gidrometeoizdat, Leningrad, 1982) [in Russian].
Google Scholar
E. L. Aleksandrov, Yu. A. Izrael’, I. L. Karol’, and A. Kh. Khrgian, The Earth’s Ozone Shield and Its Changes (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].
Google Scholar
I. L. Karol’, V. V. Rozanov, and Yu. M. Timofeev, Gaseous Admixtures in the Atmosphere (Gidrometeoizdat, Leningrad, 1983) [in Russian].
Google Scholar
World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1991, WMO Global Ozone Research and Monitoring Project, Report No. 25, Geneva, 1992.
World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1994, WMO Global Ozone Research and Monitoring Project, Report No. 37, Geneva, 1995.
Aviation and the Global Atmosphere (IPCC, 1999), Ed. by J. E. Penner, D. H. Lister, D. J. Griggs, D. J. Dokken, and M. McFarland (Cambridge University Press, UK, 1999).
Google Scholar
I. L. Karol’ and A. A. Kiselev, “Atmospheric methane and the global climate,” Priroda, No. 7, 47–52 (2004).
Google Scholar
A. A. Kiselev and I. L. Karol’, “Once again about methane,” Priroda, No. 11, 9–17 (2004).
Google Scholar
A. A. Kiselev and I. L. Karol’, Life with Methane (Rosgidromet, St. Petersburg, 2019) [in Russian].
Google Scholar
I. L. Karol’, High-Altitude Aircrafts and the Stratosphere (Gidrometeoizdat, Leningrad, 2974) [in Russian].
I. L. Karol’ and A. A. Kiselev, “Whether should Boeing and Tu be replaced by flying carpets?,” Priroda, No. 5, 60–66 (2001).
Google Scholar
I. L. Karol’, Climatic Consequences of Nuclear War (Znanie, Leningrad, 1987) [in Russian].
Google Scholar
I. L. Karol’ and A. A. Kiselev, “What do forest fires carry to the atmosphere,” Priroda, No. 5, 40–46 (2007).
Google Scholar
I. L. Karol’ and A. A. Kiselev, “The territory in the Earth’s edge: the Arctic and its climate,” Ross. Polyarn. Issled., No. 2, 19–23 (2016).
I. L. Karol’ and A. A. Kiselev, “Russia—Terra cognita. The Russian climate today,” Geogr. Ekol. Shkole XXI Veka, No. 6, 6–14 (2019).
Google Scholar
A. A. Kiselev and I. L. Karol’, “Series of weather anomalies: Randomness or regularity?,” Priroda, No. 7, 10–16 (2017).
Google Scholar
A. A. Kiselev and I. L. Karol’, “Whether can the Parisian “cure” help the climate," Priroda, No. 1, 14–21 (2017).
Google Scholar
I. L. Karol’ and A. A. Kiselev, “Climate model: An instrument or a toy?,” Priroda, No. 5, 25–31 (2017).
Google Scholar
I. L. Karol’ and A. A. Kiselev, Climate Paradoxes (AST-press, Moscow, 2013) [in Russian].