Skip to main content
Log in

Relationship between Anomalies of the Rate of Snow Cover Formation in Western Siberia and Atmospheric Dynamics in the Northern Hemisphere in the Autumn–Winter Season

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The relationship between the anomalies of the intensity of snow cover formation in Western Siberia (WS) and thermodynamic state of the atmosphere of both the WS sector and the entire Northern Hemisphere in the autumn–winter season is considered based on the data of satellite observations of the extent of the NOAA snow cover data and the ERA-Interim reanalysis data. The study is based on a comparison of two composites differing in the intensity of snow cover formation in WS. Differences in the behavior of both the instability characteristics of the atmosphere (wave action and baroclinicity) and standard meteorological variables (temperature, pressure, and geopotential height) are analyzed. It is found that the anomalies in the formation of snow cover in WS are more likely a consequence of the anomalies in the atmosphere at midlatitudes and arctic latitudes of the Northern Hemisphere that had existed before the beginning of this process. At the same time, it is possible that the anomalously rapid formation of the snow cover may further contribute to the wave activity in the atmosphere according to the feedback principle. However, this impact is not long-lasting and does not cause new long-lasting disturbances in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. P. Barnett, L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, “The effect of Eurasian snow cover on regional and global climate variations,” J. Atmos. Sci. 46 (5), 661–686 (1989).

    Article  Google Scholar 

  2. P. Y. Groisman, T. R. Karl, R. W. Knight, and G. L. Stenchikov, “Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere,” J. Clim. 7 (11), 1633–1656 (1994).

    Article  Google Scholar 

  3. S. Vavrus, “The role of terrestrial snow cover in the climate system,” Clim. Dyn. 29 (1), 73–88 (2007).

    Article  Google Scholar 

  4. J. Cohen and D. Rind, “The effect of snow cover on the climate,” J. Clim. 4 (7), 689–706 (1991).

    Article  Google Scholar 

  5. J. Cohen and D. Entekhabi, “The influence of snow cover on Northern Hemisphere climate variability,” Atmos.-Ocean 39 (1), 35–53 (2001).

    Article  Google Scholar 

  6. G. R. Henderson, D. J. Leathers, and B. Hanson, “Circulation response to Eurasian versus North American anomalous snow scenarios in the Northern Hemisphere with an AGCM coupled to a slab ocean model,” J. Clim. 26 (5), 1502–1515 (2013).

    Article  Google Scholar 

  7. K. Ye, R. Wu, and Y. Liu, “Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s,” J. Geophys. Res.: Atmos. 120 (7), 2738–2753 (2015).

    Article  Google Scholar 

  8. J. E. Walsh and B. Ross, “Sensitivity of 30-day dynamical forecasts to continental snow cover,” J. Clim. 1 (7), 739–754 (1988).

    Article  Google Scholar 

  9. D. J. Walland and I. Simmonds, “Modelled atmospheric response to changes in Northern Hemisphere snow cover,” Clim. Dyn. 13 (1), 25–34 (1996).

    Article  Google Scholar 

  10. R. K. Pachauri, M. R. Allen, V. R. Barros, et al., IPCC Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (IPCC, Geneva, 2015).

    Google Scholar 

  11. Report of Climate Features on the Territory of the Russian Federation for 2020 (Moscow, 2021) [in Russian].

  12. L. Song and R. Wu, “Intraseasonal snow cover variations over western Siberia and associated atmospheric processes,” J. Geophys. Res.: Atmos. 124, 8994–9010 (2019).

    Article  Google Scholar 

  13. . J. Sun, P. X. Wang, and J. X. L. Wang, “An assessment of the atmospheric centers of action in the Northern Hemisphere winter,” Clim. Dyn. 48, 1031–1047 (2017)

    Article  Google Scholar 

  14. P. Y. Groisman, G. Gutman, A. Z. Shvidenko, K. M. Bergen, A. A. Baklanov, P. W. Stackhouse, “Introduction: Regional features of Siberia,” in Regional Environmental Changes in Siberia and Their Global Consequences, Ed. by P. Yu. Groisman and G. Gutman (Springer, Dordrecht, 2013), pp. 1–17.

    Book  Google Scholar 

  15. V. P. Gorbatenko, I. I. Ippolitov, and N. V. Podnebesnykh, “Atmospheric circulation over western Siberia in 1976–2004,” Russ. Meteorol. Hydrol. 32 (5), 301–306 (2007).

    Article  Google Scholar 

  16. X. Zhang, C. Lu, and Z. Guan, “Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia,” Environ. Res. Lett. 7 (4), 044044 (2012).

    Article  Google Scholar 

  17. J. Foster, M. Owe, and A. Rango, “Snow cover and temperature relationships in North America and Eurasia,” J. Clim. Appl. Meteorol. 22, 460–469 (1983).

    Article  Google Scholar 

  18. J. Cohen and D. Entekhabi, “Eurasian snow cover variability and Northern Hemisphere climate predictability,” Geophys. Res. Lett. 26 (3), 345–348 (1999).

    Article  Google Scholar 

  19. K. Saito, J. Cohen, and D. Entekhabi, “Evolution of atmospheric response to early-season Eurasian snow cover anomalies,” Mon. Weather Rev. 129 (11), 2746–2760 (2001).

    Article  Google Scholar 

  20. G. Gong, D. Entekhabi, and J. Cohen, “A large-ensemble model study of the wintertime AO–NAO and the role of interannual snow perturbations,” J. Clim. 15 (23), 3488–3499 (2002).

    Article  Google Scholar 

  21. K. Saito and J. Cohen, “The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode,” Geophys. Res. Lett. 30 (6) (2003).

  22. G. Gong, D. Entekhabi, and J. Cohen, “Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies,” J. Clim. 16 (23), 3917–3931 (2003).

    Article  Google Scholar 

  23. J. Cohen, M. Barlow, P. J. Kushner, and K. Saito, “Stratosphere–troposphere coupling and links with Eurasian land-surface variability,” J. Clim. 20, 5335–5343 (2007).

    Article  Google Scholar 

  24. Y. J. Orsolini and N. G. Kvamsto, “Role of Eurasian snow cover in wintertime circulation: Decadal simulations forced with satellite observations,” J. Geophys. Res.: Atmos. 114, D19 (2009).

    Google Scholar 

  25. R. J. Allen and C. S. D. Zender, “Effects of continental-scale snow albedo anomalies on the wintertime Arctic oscillation,” J. Geophys. Res. 115, D23105 (2010).

    Article  Google Scholar 

  26. Yu. V. Martynova and V. N. Krupchatnikov, “A study of the sensitivity of the surface temperature in Eurasia in winter to snow-cover anomalies: The role of the stratosphere,” Izv., Atmos. Ocean. Phys. 46 (6), 757–769 (2010).

    Article  Google Scholar 

  27. J. Cohen, J. C. Furtado, J. Jones, M. Barlow, D. Whittleston, and D. Entekhabi, “Linking Siberian snow cover to precursors of stratospheric variability,” J. Clim. 27 (14), 5422–5432 (2014).

    Article  Google Scholar 

  28. R. J. Allen and C. S. Zender, “Forcing of the Arctic oscillation by Eurasian snow cover,” J. Clim. 24 (24), 6528–6539 (2011).

    Article  Google Scholar 

  29. Y. Peings, Doctoral Dissertation in Environmental and Space Sciences (University of Toulouse, University of Toulouse III – Paul Sabatier, 2010).

  30. J. L. Cohen, J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, “Arctic warming, increasing snow cover and widespread boreal winter cooling,” Environ. Res. Lett. 7 (1), 014007 (2012).

    Article  Google Scholar 

  31. J. C. Furtado, J. L. Cohen, A. H. Butler, et al., “Eurasian snow cover variability and links to winter climate in the CMIP5 models,” Climate Dyn. 45, 2591–2605 (2015).

    Article  Google Scholar 

  32. D. Handorf, R. Jaiser, K. Dethloff, A. Rinke, and J. Cohen, “Impacts of Arctic sea ice and continental snow cover changes on atmospheric winter teleconnections,” Geophys. Res. Lett. 42 (7), 2367–2377 (2015).

    Article  Google Scholar 

  33. G. Gastineau, J. García-Serrano, and C. Frankignoul, “The influence of autumnal Eurasian snow cover on climate and its link with Arctic sea ice cover,” J. Clim. 30 (19), 7599–7619 (2017).

    Article  Google Scholar 

  34. Y. Peings, H. Douville, J. Colin, D. S. Martin, and G. Magnusdottir, “Snow-(N) AO teleconnection and its modulation by the Quasi-Biennial Oscillation,” J. Clim. 30 (24), 10211–10235 (2017).

    Article  Google Scholar 

  35. Y. J. Orsolini, R. Senan, F. Vitart, G. Balsamo, A. Weisheimer, and F. J. Doblas-Reyes, “Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010,” Climate Dyn. 47 (3–4), 1325–1334 (2016).

    Article  Google Scholar 

  36. N. L. Tyrrell, A. Y. Karpechko, and P. Räisänen, “The influence of Eurasian snow extent on the northern extratropical stratosphere in a QBO resolving model,” J. Geophys. Res.: Atmos. 123 (1), 315–328 (2018).

    Article  Google Scholar 

  37. Y. Peings, E. Brun, V. Mauvais, and H. Douville, “How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century?,” Geophys. Res. Lett. 40, 183–188 (2013).

    Article  Google Scholar 

  38. V. V. Popova, A. V. Shiryaeva, and P. A. Morozova, “Snow cover timing in northern Eurasia: Direct links and feedbacks with large-scale atmospheric circulation,” Led Sneg 127 (3), 39–49 (2014).

    Google Scholar 

  39. L. Zhao, Y. Zhu, H. Liu, Z. Liu, Y. Liu, X. Li, and Z. Chen, “A stable snow–atmosphere coupled mode,” Clim. Dyn. 47 (7), 2085–2104 (2016).

    Article  Google Scholar 

  40. Y. V. Martynova, “October snow cover and winter atmospheric conditions in Siberia,” IOP Conf. Ser.: Earth Environ. Sci. 386 (1), 012001 (2019).

  41. S. Han and J. Sun, “Impacts of autumnal Eurasian snow cover on predominant modes of boreal winter surface air temperature over Eurasia,” J. Geophys. Res.: Atmos. 123 (18), 10–76 (2018).

    Article  Google Scholar 

  42. M. Wegmann, M. Rohrer, M. Santolaria-Otín, and G. Lohmann, “Eurasian autumn snow link to winter North Atlantic Oscillation is strongest for Arctic warming periods,” Earth Syst. Dyn. 11 (2), 509–524 (2020).

    Article  Google Scholar 

  43. V. N. Kryjov, “October circulation precursors of the wintertime Arctic oscillation,” Int. J. Climatol. 35 (2), 161–171 (2015).

    Article  Google Scholar 

  44. M. Wegmann, Y. Orsolini, M. Vázquez, L. Gimeno, R. Nieto, O. Bulygina, R. Jaiser, D. Handorf, A. Rinke, K. Dethloff, and A. Sterin, “Arctic moisture source for Eurasian snow cover variations in autumn,” Environ. Res. Lett. 10 (5), 054015 (2015).

    Article  Google Scholar 

  45. S.-R. Yeo, W. Kim, and K.-Y. Kim, “Eurasian snow cover variability in relation to warming trend and Arctic Oscillation,” Clim. Dyn. 48, 499–511 (2017).

    Article  Google Scholar 

  46. J. Cohen, X. Zhang, J. Francis, T. Jung, R. Kwok, J. Overland, T. J. Ballinger, U. S. Bhatt, H. W. Chen, D. Coumou, and S. Feldstein, “Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather,” Nat. Clim. Change 10 (1), 20–29 (2020).

    Article  Google Scholar 

  47. G. R. Henderson, Y. Peings, J. C. Furtado, and P. J. Kushner, “Snow–atmosphere coupling in the Northern Hemisphere,” Nat. Clim. Change 8 (11), 954–963 (2018).

    Article  Google Scholar 

  48. T. W. Estilow, A. H. Young, and D. A. Robinson, “A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring,” Earth Syst. Sci. Data 7, 137–142 (2015).

    Article  Google Scholar 

  49. Y. V. Martynova, “December. Special aspects of snow cover formation in Western and Eastern Siberia,” IOP Conf. Ser.: Earth Environ. Sci. 611 (1), 012006 (2020).

  50. D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, et al., “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137 (656), 553–597 (2011).

    Article  Google Scholar 

  51. J. R. Holton, An Introduction to the Dynamic Meteorology (Academic, 2004).

    Google Scholar 

  52. J. F. Booth, Y. O. Kwon, S. Ko, R. J. Small, and R. Msadek, “Spatial patterns and intensity of the surface storm tracks in CMIP5 models,” J. Clim. 30 (13), 4965–4981 (2017).

    Article  Google Scholar 

  53. M. Nakamura and S. Yamane, “Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin,” J. Clim. 22, 880–904 (2009).

    Article  Google Scholar 

  54. A. R. Ivanova, N. P. Shakina, E. N. Skriptunova, and N. I. Bogaevskaya, “Comparison of dynamical characteristics of the blocking anticyclone in summer 2010 with earlier episodes,” in Analysis of Abnormal Summer Weather Conditions in Russia, Ed. by N. P. Shakina (Triada Ltd., Moscow, 2010), pp. 65–71 [in Russian].

    Google Scholar 

  55. E. Chang, S. Lee, and K. Swanson, “Storm track dynamics,” J. Clim. 15, 2163–2182 (2002).

    Article  Google Scholar 

  56. E. Chang, Y. Guo, X. Xia, and M. Zheng, “Storm-track activity in IPCC AR4/CMIP3 model simulations,” J. Clim. 26, 246–260 (2013).

    Article  Google Scholar 

  57. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, and Y. Zhu, “The NCEP/NCAR 40-year reanalysis project,” Bull. Am. Meteorol. Soc. 77 (3), 437–472 (1996).

    Article  Google Scholar 

  58. E. Tyrlis, J. Bader, E. Manzini, J. Ukita, H. Nakamura, and D. Matei, “On the role of Ural blocking in driving the warm Arctic-cold Siberia pattern,” Q. J. R. Meteorol. Soc. 146, 2138–2153 (2020).

    Article  Google Scholar 

  59. J. Cohen, J. A. Screen, J. C. Furtado, M. Barlow, D. Whittleston, D. Coumou, J. Francis, K. Dethloff, D. Entekhabi, J. Overland, and J. Jones, “Recent Arctic amplification and extreme mid-latitude weather,” Nat. Geosci. 7 (9), 627–637 (2014).

    Article  Google Scholar 

  60. T. Vihma, “Effects of Arctic sea ice decline on weather and climate: A review,” Surv. Geophys. 35 (5), 1175–1214 (2014).

    Article  Google Scholar 

  61. T. G. Shepherd, “Effects of a warming Arctic,” Science 353 (6303), 989–990 (2016).

    Article  Google Scholar 

  62. J. E. Overland, K. Dethloff, J. A. Francis, R. J. Hall, E. Hanna, S. J. Kim, J. A. Screen, T. G. Shepherd, and T. Vihma, “Nonlinear response of mid-latitude weather to the changing Arctic,” Nat. Clim. Change 6 (11), 992–999 (2016).

    Article  Google Scholar 

  63. M. Honda, J. Inoue, and S. Yamane, “Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters,” Geophys. Res. Lett. 36 (8), L08707 (2009).

    Article  Google Scholar 

  64. H.-J. Kim, S.-W. Son, W. Moon, J.-S. Kug, and J. Hwang, “Subseasonal relationship between Arctic and Eurasian surface air temperature,” Sci. Rep. 11 (1), 1–10 (2021).

    Google Scholar 

  65. A. Kumar, J. Perlwitz, J. Eischeid, et al., “Contribution of sea ice loss to Arctic amplification,” Geophys. Res. Lett. 37 (21), L21701 (2010). https://doi.org/10.1029/2010GL045022

    Article  Google Scholar 

  66. C. Deser, R. Tomas, M. Alexander, and D. Lawrence, “The seasonal atmospheric response to projected Arctic sea ice loss in the late 21st century,” J. Clim. 23, 333–351 (2010).

    Article  Google Scholar 

  67. D. Ghatak, A. Frei, G. Gong, J. Stroeve, and D. Robinson, “On the emergence of an Arctic amplification signal in terrestrial Arctic snow extent,” J. Geophys. Res. 115 (D24), 1029 (2010). https://doi.org/10.1029/2010JD014007

    Article  Google Scholar 

  68. N. K. Kononova and A. R. Lupo, “Changes in the dynamics of the Northern Hemisphere atmospheric circulation and the relationship to surface temperature in the 20th and 21st centuries,” Atmosphere 11 (3), 255 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Cand. Sci. (Phys. Math.) E.V. Kharyutkina and Cand. Sci. (Tech.) I.G. Okladnikov for valuable advice and guidance. We are also grateful to an anonymous reviewers for helpful comments.

Funding

This work was supported by the Russian Science Foundation, grant no. 19-17-00248 “Hydrodynamic Instability and Large-Scale Eddy Dynamics of the Atmosphere in a Changing Climate,” except for Section 2.1, where the analysis of the interannual behavior of the snow cover was carried out as part of state budget theme no. 121031300158-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Martynova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynova, Y.V., Krupchatnikov, V.N., Gochakov, A.V. et al. Relationship between Anomalies of the Rate of Snow Cover Formation in Western Siberia and Atmospheric Dynamics in the Northern Hemisphere in the Autumn–Winter Season. Izv. Atmos. Ocean. Phys. 58, 95–109 (2022). https://doi.org/10.1134/S0001433822010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822010078

Keywords:

Navigation