Skip to main content
Log in

Modeling Seasonal Variations in the Intensity of Internal Gravity Waves in the Lower Thermosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An updated numerical model of the propagation of a set of spectral harmonics of internal gravity waves (IGWs) in the inhomogeneous atmosphere from the earth’s surface to the lower thermosphere is described. IGW dissipation due to turbulent viscosity and thermal conductivity, radiative heat exchange, and ion drag in the lower ionosphere is taken into account. A numerical simulation of the propagation of the IGW spectrum is performed for the background fields of wind and temperature corresponding to the coordinates of the Zvenigorod (56° N, 37° E), Maymaga (63° N, 130° E), and Tory (52° N, 103° E) stations, where systematic observations of OH nightglow are carried out. Seasonal variations of standard deviations of perturbations of the horizontal velocity components created by the model of IGW spectrum are calculated. A general similarity exists between seasonal variations of the model IGW amplitudes and observations of the variance of mesoscale disturbances of the OH rotational temperature at Zvenigorod and Tory. This gives evidence that the intensity of mesoscale temperature disturbances near the mesopause may depend on the intensity of IGWs propagating from the lower atmosphere and on the profiles of the background characteristics of the middle atmosphere along the path of wave packages propagation in different seasons and at different geographical locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. N. Shefov, A. I. Semenov, and V. Yu. Khomich, Airglow as an Indicator of the Upper Atmospheric Structure and Dynamics (Geos, Moscow, 2006) [in Russian].

    Google Scholar 

  2. V. I. Krassovski, “Infrasonic variations of OH emission in the upper atmosphere,” Ann. Geophys. 28, 739–746 (1972).

    Google Scholar 

  3. V. I. Krasovskii, B. P. Potapov, A. I. Semenov, and N. N. Shefov, “Internal gravity waves near the mesopause. 1. The results of hydroxyl emission studies,” in Auroras and Nightglow, Ed. by Yu. I. Gal’perin (Sov. Radio, Moscow, 1978), pp. 5–29 [in Russian].

    Google Scholar 

  4. M. J. Taylor, M. A. Hapgood, and P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near infrared OH nightglow emissions,” Planet. Space Sci. 35 (4), 413–427 (1987).

    Article  Google Scholar 

  5. M. J. Taylor and M. A. Hapgood, “On the origin of ripple-type wave structure in the OH nightglow emission,” Planet. Space Sci. 38 (11), 1421–1430 (1990).

    Article  Google Scholar 

  6. S. L. Vadas, M. J. Taylor, S. P.-D. Pautet, D. C. Fritts, and H.-L. Liu, “Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign,” Ann. Geophys. 27, 231–259 (2009).

    Article  Google Scholar 

  7. T. Nakamura, A. Higashikawa, T. Tsuda, and Y. Matsushita, “Seasonal variations of gravity wave structures in OH airglow with a CCD imager at Shigaraki,” Earth Planets Space 51, 897–906 (1999).

    Article  Google Scholar 

  8. N. M. Gavrilov, K. Shiokawa, and T. Ogawa, “Seasonal variations of medium-scale gravity wave parameters in the lower thermosphere obtained from SATI observations at Shigaraki, Japan,” J. Geophys. Res. 107 (D24), 4755 (2002). https://doi.org/10.1029/2001JD001469

    Article  Google Scholar 

  9. V. I. Perminov, A. I. Semenov, N. N. Pertsev, and I. V. Medvedeva “Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes,” Geomagn. Aeron. (Engl. Transl.) 54 (2), 230–239 (2014).

  10. I. V. Medvedeva, A. B. Beletskii, V. I. Perminov, and N. N. Pertsev, “Atmospheric temperature variations in the mesopause and lower thermosphere during stratospheric warmings from data of ground-based and satellite measurements in different longitudinal sectors,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 8 (4), 127–135 (2011).

    Google Scholar 

  11. N. N. Pertsev, A. B. Andreev, E. G. Merzlyakov, and V. I. Perminov, “Mesosphere–thermosphere manifestations of stratospheric warmings: Joint use of satellite and ground-based measurements,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 10 (1), 93–100 (2013).

    Google Scholar 

  12. A. A. Popov, N. M. Gavrilov, V. I. Perminov, N. N. Pertsev, and I. V. Medvedeva, “Multi-year observations of mesoscale variances of hydroxyl nightglow near the mesopause at Tory and Zvenigorod,” J. Atmos. Sol.-Terr. Phys. 205, 105311 (2020). https://doi.org/10.1016/j.jastp.2020.105311

    Article  Google Scholar 

  13. N. M. Gavrilov, A. A. Popov, V. I. Perminov, N. N. Pertsev, I. V. Medvedeva, P. P. Ammosov, G. A. Gavrilyeva, and I. I. Koltovskoi, “Mesoscale variations of hydroxyl rotational temperature from observations at Russian sites,” Proc. SPIE 11560, 115607W (2020). https://doi.org/10.1117/12.2574795

    Article  Google Scholar 

  14. N. M. Gavrilov and S. Fukao, “A comparison of seasonal variations of gravity wave intensity observed by the MU radar with a theoretical model,” J. Atmos. Sci. 56, 3485–3494 (1999).

    Article  Google Scholar 

  15. N. M. Gavrilov, “Parametrization of the dynamical and thermal effect of steady-state internal gravity waves on the middle atmosphere,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 25 (3), 271–278 (1989).

    Google Scholar 

  16. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975).

    Google Scholar 

  17. E. Yiǧit and A. S. Medvedev, “Heating and cooling of the thermosphere by internal gravity waves,” Geophys. Res. Lett. 36, L14807 (2009). https://doi.org/10.1029/2009GL038507

    Article  Google Scholar 

  18. A. S. Medvedev and P. Klaassen, “Thermal effects of saturating gravity waves in the atmosphere,” J. Geophys. Res. 108 (D2), 4040 (2003). https://doi.org/10.1029/2002JD002504

    Article  Google Scholar 

  19. R. A. Akmaev, “On the energetics of the mean-flow interactions with thermally dissipating gravity waves,” J. Geophys. Res. 112, D11125 (2007). https://doi.org/10.1029/2006JD007908

    Article  Google Scholar 

  20. N. M. Gavrilov, “Parameterization of momentum and energy depositions from gravity waves generated by tropospheric hydrodynamic sources, " Ann. Geophys. 15, 1570–1580 (1997).

    Article  Google Scholar 

  21. D. Gough, “An elementary introduction to the JWKB approximation,” Astron. Nachr. AN999 (88), 789–801 (2006).

    Google Scholar 

  22. N. M. Gavrilov and G. M. Shved, “Attenuation of acoustic–gravity waves in an anisotropically turbulent radiating atmosfere,” Izv. Akad. Naul SSSR, Fiz. Atmos. Okeana 11 (7), 681–689 (1975).

    Google Scholar 

  23. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, (Nauka, Fizmatgiz, Moscow, 1967), Vol. 2 [in Russian].

  24. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41 (1), 1003 (2003). https://doi.org/10.1029/2001RG000106

    Article  Google Scholar 

  25. J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues,” J. Geophys. Res. 107 (A12), 1468 (2002). https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

  26. D. P. Drob, J. T. Emmert, J. W. Meriwether, et al., “An update to the Horizontal Wind Model (HWM): The quiet time thermosphere,” Earth Space Sci. 2 (7), 301–309 (2015). https://doi.org/10.1002/2014EA000089

    Article  Google Scholar 

  27. D. Bilitza, “IRI 86 and MSIS 86 models updated,” EOS, Trans. Am. Geophys. Union 68 (25), 595–595 (1987). https://doi.org/10.1029/EO068i025p00595-02

    Article  Google Scholar 

  28. R. S. Lindzen, “Turbulence and stress owing to gravity wave and tidal breakdown,” J. Geophys. Res. 86 (C10), 9707–9714 (1981).

    Article  Google Scholar 

  29. N. M. Gavrilov and V. A. Yudin, “Model for coefficients of turbulence and effective Prandtl number produced by breaking gravity waves in the upper atmosphere,” J. Geophys. Res. 97 (D7), 7619–7624 (1992).

    Article  Google Scholar 

  30. R. S. Lindzen and J. Forbes, “Turbulence originating from convectively stable internal waves,” J. Geophys. Res. 88, 6549–6553 (1983).

    Article  Google Scholar 

  31. J. Weinstock, “Theoretical relation between momentum deposition and diffusion caused by gravity waves,” Geophys. Res. Lett. 9 (8), 863–865 (1982). https://doi.org/10.1029/GL009i008p00863

    Article  Google Scholar 

  32. S. Kh. Rozenfel’d, " Attenuation of internal gravity waves in the atmosphere due to the generation of secondary harmonics," Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 19 (9), 1011–1019 (1983).

    Google Scholar 

  33. A. S. Medvedev and E. Yiǧit, “Gravity waves in planetary atmospheres: Their effects and parameterization in global circulation models,” Atmosphere 10, 531 (2019). https://doi.org/10.3390/atmos10090531

    Article  Google Scholar 

Download references

Funding

The modernization of the numerical model and parameterization of IGWs were supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2021-583. The calculation of the distributions of background fields taking into account the general circulation and planetary waves was supported by the Russian Science Foundation, grant no. 20-77-10006. The simulation of seasonal variations and comparison with optical observation data were supported by the Russian Foundation for Basic Research, project no. 19-35-90130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Gavrilov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, N.M., Popov, A.A. Modeling Seasonal Variations in the Intensity of Internal Gravity Waves in the Lower Thermosphere. Izv. Atmos. Ocean. Phys. 58, 68–79 (2022). https://doi.org/10.1134/S0001433822010030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822010030

Keywords:

Navigation