Skip to main content
Log in

Variation of Tropospheric NO2 on the Territories of Saint Petersburg and Leningrad Region According to Remote Sensing Data

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

NO2 is a reactive gas which is produced mainly due to man-made activities (burning of fossil fuels) and influences negatively people organisms and environment. Since the Earth population keeps increasing, the content of the gas in the atmosphere is expected to rise. Satellite monitoring is the most optimal method to observe the spatio-temporal distribution of NO2 in the troposphere globally which cannot be achieved by ground-based measurements. However, there are several different satellite measurement systems which provide the information on tropospheric NO2. In the current study we compared tropospheric NO2 data for the more than 10-year period retrieved from the measurements of OMI and GOME/SCIAMACHY/GOME-2 satellite measurement systems for the territories of Saint Petersburg and Leningrad region (Russia). Also, we investigated correlation between the NO2 tropospheric content by satellite measurements and near-surface NO2 concentration by ground-based measurements in Saint Petersburg. The research demonstrated that OMI and GOME/SCIAMACHY/GOME-2 data on tropospheric NO2 content possessed large discrepancies (approximately 100% relative to OMI data) for the area and period of interest. The datasets did not correlate well but some similarities in a seasonal variation of the tropospheric NO2 content for Saint Petersburg and Leningrad region were found. In addition, we registered an obvious correlation in the trend of near-surface and tropospheric NO2 content obtained by ground-based and OMI satellite measurements respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Wallace and P. Hobbs, Atmospheric Science: An Introductory Survey (Academic Press, Canada, 2006).

    Google Scholar 

  2. World Health Organization. “9 out of 10 people worldwide breathe polluted air, but more countries are taking action.” https://www.who.int/news/item/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action. Accessed June 23, 2021.

  3. J. Seinfield and S. Pandis, Atmospheric Chemistry and Physics (Wiley-Interscience, 2006).

  4. S. Tronin, A. Kritsuk, and A. Kiselev, “Estimation of multiyear changes in nitrogen oxide concentrations over Russia from satellite measurements,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 16 (2), 259–265 (2019). https://doi.org/10.21046/2070-7401-2019-16-2-259-265

    Article  Google Scholar 

  5. World Health Organization, Air Quality Guidelines, Second Edition, 2000. https://www.euro.who.int/__ data/assets/pdf_file/0017/123083/AQG2ndEd_7_1nitrogendioxide.pdf. Accessed June 23, 2021.

  6. B. Sportisse, Fundamentals in Air Pollution (Springer, Dordrecht, 2010).

    Book  Google Scholar 

  7. P. J. Crutzen, “The role of NO and NO2 in the chemistry of the troposphere and stratosphere,” Annu. Rev. Earth Planet. Sci. 7, 443–472. (1979).

    Article  Google Scholar 

  8. A. Tronin, S. Kritsuk, and I. Latypov, “Satellite Observations of Nitrogen Dioxide in Russia,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 6 (2), 217–223 (2009).

    Google Scholar 

  9. Federal State Statistics Service, Russian regions, socio-economic indicators, 2011. http://www.gks.ru/bgd/ regl/b11_14p/IssWWW.exe/Stg/d01/05-17.htm. Accessed June 23, 21.

  10. Administration of the Baltic Sea ports. https://www. pasp.ru/arhiv. Accessed June 23, 2021.

  11. European Environment Agency, Explaining Road Transport Emissions: A Non-Technical Guide (Publications Office of the European Union, Luxembourg, 2016).

  12. D. L. Goldberg, L. N. Lamsal, C. P. Loughner, W. H. Swartz, Z. Lu, and D. G. Streets, “A high-resolution and observationally constrained OMI NO2 satellite retrieval,” Atmos. Chem. Phys. 17, 11403–11421 (2017). https://doi.org/10.5194/acp-17-11403-2017

    Article  Google Scholar 

  13. Y. M. Timofeyev, I. A. Berezin, Y. A. Virolainen, M. V. Makarova, A. V. Polyakov, A. V. Poberovsky, N. N. Filippov, and S. Ch. Foka, “Spatial–Temporal CO2 variations near St. Petersburg based on satellite and ground-based measurements,” Izv., Atmos. Ocean. Phys. 55 (1), 59–64 (2019). https://doi.org/10.1134/S0001433819010109

    Article  Google Scholar 

  14. Y. Timofeyev, Y. Virolainen, M. Makarova, A. Poberovsky, D. Ionov, S. Osipov, and H. Imhasin, “Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia),” J. Mol. Spectrosc. 323, 2–14 (2016). https://doi.org/10.1016/j.jms.2015.12.007

    Article  Google Scholar 

  15. J. Gu, L. Chen, C. Yu, S. Li, J. Tao, M. Fan, X. Xiong, Z. Wang, H. Shang, and L. Su, “Ground-level NO2 concentrations over China inferred from the satellite OMI and CMAQ model simulations,” Remote Sens. 9 (6), 519 (2017). https://doi.org/10.3390/rs9060519

    Article  Google Scholar 

  16. Royal Netherlands Meteorological Institute, Ozone Monitoring Instrument (OMI). https://www.knmiprojects.nl/projects/ozone-monitoring-instrument. Accessed June 23, 2021.

  17. H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noel, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, “SCIAMACHY: Mission objectives and measurement modes,” J. Atmos. Sci. 56 (2), 127–150 (1998). https://doi.org/10.1175/1520-0469(1999)056%3C0127:SMOAMM%3E2.0.CO;2

    Article  Google Scholar 

  18. University of Bremen, SCIAMACHY homepage. https://www.iup.uni-bremen.de/sciamachy. Accessed June 23, 2021.

  19. European Space Agency, SCIAMACHY. https://earth. esa.int/web/guest/missions/esa-operational-eo-missions/ envisat/instruments/sciamachy. Accessed June 23, 2021.

  20. European Space Agency, Envisat. https://www.esa.int/ Enabling_Support/Operations/Envisat. Accessed June 23, 2021.

  21. J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weißenmayer, A. Richter, R. DeBeek, R. Hoogen, K. Bramstedt, K. Eichmann, M. Eisinger, and D. Perner, “The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results,” J. Atmos. Sci. 56 (2), 151–175 (1998). https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2

    Article  Google Scholar 

  22. European Space Agency, About GOME-2. http:// www.esa.int/Applications/Observing_the_Earth/Meteorological_missions/MetOp/About_GOME-2. Accessed June 23, 2021.

  23. EUMETSAT, GOME-2. https://www.eumetsat.int/ gome-2. Accessed June 23, 2021.

  24. J. Callies, E. Corpaccioli, M. Eisinger, A. Hahne, and A. Lefebvre, “GOME-2: Metop’s second-generation sensor for operational ozone monitoring,” Eur. Space Agency Bull. 100, 28–36 (2000).

    Google Scholar 

  25. Homepage Julien Chimot: a journey in Earth observation satellite science. TROPOspheric Monitoring Instrument (TROPOMI). https://julien-chimot-research. blog/tropospheric-monitoring-instrument-tropomi/. Accessed June 23, 2021.

  26. European Space Agency, Instrumental Payload. https://sentinels.copernicus.eu/web/sentinel/missions/ sentinel-5p/instrumental-payload. Accessed June 23, 2021.

  27. C. Lee, R. V. Martin, A. van Donkelaar, A. Richter, J. P. Burrows, and Y. J. Kim, “Remote sensing of tropospheric trace gases (NO2 and SO2) from SCIAMACHY,” in Atmospheric and Biological Environmental Monitoring, Ed. by Y. J. Kim, U. Platt, M. B. Gu, and H. Iwahashi (Springer, Dordrecht, 2009), pp. 63–72.

    Google Scholar 

  28. K. F. Boersma, D. J. Jacob, H. J. Eskes, R. W. Pinder, J. Wang, and R. J. van der A, “Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns: Observing the diurnal evolution of chemistry and emissions from space,” J. Geophys. Res. 113, D16S26 (2008). https://doi.org/10.1029/2007JD008816

    Article  Google Scholar 

  29. M. J. Bechle, D. B. Millet, and J. D. Marshall, “Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area,” Atmos. Environ. 69, 345–353 (2013). https://doi.org/10.1016/j.atmosenv.2012.11.046

    Article  Google Scholar 

  30. K. F. Boersma, R. Braak, and R. J. van der A, Dutch OMI NO2 (DOMINO) data product v2.0 HE5 data file user manual. https://d37onar3vnbj2y.cloudfront.net/ static/docs/OMI_NO2_HE5_2.0_2011.pdf. Accessed June 23, 2021.

  31. R. J. van der A and H. J. Eskes, Product Specification Document Tropospheric NO2. https://d37onar3vnbj2y.cloudfront.net/static/docs/PSD_NO2.pdf. Accessed June 23, 2021.

  32. Report on Environmental Conditions in St. Petersburg for 2018, Ed. by I. A. Serebritskii (St. Petersburg, 2019) [in Russian]. https://www.gov.spb.ru/static/writable/ckeditor/uploads/2019/08/12/42/doklad_za_2018_EKOLOGIA2019.pdf. Accessed June 23, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sedeeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedeeva, M., Tronin, A., Nerobelov, G. et al. Variation of Tropospheric NO2 on the Territories of Saint Petersburg and Leningrad Region According to Remote Sensing Data. Izv. Atmos. Ocean. Phys. 57, 669–679 (2021). https://doi.org/10.1134/S0001433821200032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821200032

Keywords:

Navigation