Skip to main content
Log in

Long-Term Tendencies of Intensity of Eastern Boundary Upwelling Systems Assessed from Different Satellite Data. Part 1: Atlantic Upwellings

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING SEAS AND OCEANS FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Comparative estimation of long-term trends in the variability of the largest Atlantic upwellings (Canary and Benguela) has been carried out in this paper. Satellite data on the sea surface temperature and three surface wind datasets prepared by different scientific groups have been used. The difference in the calculated absolute vertical velocities due to alongshore wind drift and horizontal wind-field nonuniformity reach tens of percent. All time series demonstrate the common tendency for the intensification of the upwellings from the 1980s to the early 1990s. This confirms published materials concerning the intensification of Canary and Benguela upwellings under global warming. However, since the late 1990s, the intensification of the upwellings has nearly ceased. This proves the highly important role of the natural interdecadal climate variations in the variability of intensity of generation of upwellings during the period of regular satellite measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Atlas, R., Hoffman, R.N., Bloom, S.C., Jusem, J.C., and Ardizzone, J., A multiyear global surface wind velocity dataset using SSM/I wind observations, Bull. Am. Meteorol. Soc., 1996, vol. 77, no. 5, pp. 869–882.

    Article  Google Scholar 

  2. Atlas, R., Hoffman, R.N., Ardizzone, J., Leidner, S.M., Jusem, J.C., Smith, D.K., and Gombos, D., A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications, Bull. Am. Meteorol. Soc., 2011, vol. 92, pp. 157–174. https://doi.org/10.1175/2010BAMS2946.1

    Article  Google Scholar 

  3. Bakun, A., Coastal upwelling indices, west coast of North America, 1946–71, NOAA Tech. Rep. NMFS SSRF-671, U.S. Department of Commerce, 1973, vol. 103.

    Google Scholar 

  4. Bakun, A., Global climate change and intensification of coastal ocean upwelling, Science, 1990, vol. 247, pp. 198–201. https://doi.org/10.1126/science.247.4939.198

    Article  Google Scholar 

  5. Bakun, A., Black, B.A., Bograd, S.J., Garcia-Reyes, M., Miller, A.J., Rykaczewski, R.R., et al., Anticipated effects of climate change on coastal upwelling ecosystems, Curr. Clim. Change Rep., 2015, vol. 1, pp. 85–93. https://doi.org/10.1007/s40641-015-0008-4

    Article  Google Scholar 

  6. Belmadani, A., Echevin, V., Codron, F., Takahashi, K., and Junquas, C., What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile?, Clim. Dyn., 2014, vol. 43, nos. 7–8, pp. 1893–1914. https://doi.org/10.1007/s00382-013-2015-2

    Article  Google Scholar 

  7. Bentamy, A. and Croizé-Fillon, D.C., Gridded surface wind fields from Metop/ASCAT measurements, Int. J. Remote Sens., 2012, vol. 33, no. 6, pp. 1729–1754. https://doi.org/10.1080/01431161.2011.600348

    Article  Google Scholar 

  8. Bourassa, M.A. and Hughes, P.J., Surface heat fluxes and wind remote sensing, in New Frontiers in Operational Oceanography, Chassignet, E., Pascual, A., Tintore, J., and Verron, J., Eds., GODAE OceanView, 2018, pp. 245–270. https://doi.org/10.17125/gov2018.ch10.

  9. Bourassa, M.A., Rodriguez, E., and Gaston, R., Summary of the 2008 NASA ocean vector winds science team meeting, Bull. Am. Meteorol. Soc., 2009, vol. 91, pp. 925–928. https://doi.org/10.1175/2010BAMS2880.1

    Article  Google Scholar 

  10. Bourassa, M.A., Meissner, T., Cerovecki, I., Chang, P.S., Dong, X., De Chiara, G., Donlon, C., Dukhovskoy, D.S., Elya, J., Fore, A., Fewings, M.R., Foster, R.C., et al., Remotely sensed winds and wind stresses for marine forecasting and ocean modeling, Front. Mar. Sci., 2019, vol. 6, id 443. https://doi.org/10.3389/fmars.2019.00443

  11. Chelton, D.B., deSzoeke, R.A., Schlax, M.G., El Naggar, K., and Siwertz, N., Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 1998, vol. 28, pp. 433–460. https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2

    Article  Google Scholar 

  12. Cropper, T.E., Hanna, E., and Bigg, G.R., Spatial and temporal seasonal trends in coastal upwelling off Northwest Africa, 1981–2012, J. Deep-Sea Res., 2014, vol. 86, pp. 94–111.

    Article  Google Scholar 

  13. Cushing, D.H., Upwelling and the production of fish, Adv. Mar. Biol., 1971, vol. 9, pp. 255–334. https://doi.org/10.1016/S0065-2881(08)60344-2

    Article  Google Scholar 

  14. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., et al., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 2011, vol. 137, pp. 553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  15. Dem’yanov, V.V. and Savel’eva, E.A., Geostatistika: teoriya i praktika (Geostatistics: Theory and Practice), Moscow: IBRAE RAN, 2010.

  16. Desbiolles, F., Bentamy, A., Blanke, B., Roy, C., Mestas-Nunez, A., Grodsky, S.A., Herbette, S., Cambon, G., and Maes, C., Two decades [1992–2012] of surface wind analyses based on satellite scatterometer observations, J. Mar. Syst., 2017, vol. 168, pp. 38–56. https://doi.org/10.1016/j.jmarsys.2017.01.003

    Article  Google Scholar 

  17. Ekman, V., On the influence of the Earth’s rotation on ocean currents, Ark. Mat. Astron. Fys., 1905, vol. 2, pp. 1–53.

    Google Scholar 

  18. Fréon, P., Barange, M., and Aristegui, J., Eastern boundary upwelling ecosystems: Integrative and comparative approaches, Prog. Oceanogr., 2009, vol. 83, pp. 1–14.

    Article  Google Scholar 

  19. García-Reyes, M., Sydeman, W.J., Schoeman, D.S., Rykaczewski, R.R., Black, B.A., Smit, A.J., and Bograd, S.J., Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems, Front. Mar. Sci., 2015, vol. 2, id 109. https://doi.org/10.3389/fmars.2015.00109

  20. Herbland, A. and Voituriez, B., La production primaire dans l’upwelling mauritanien en mars 1973, Cah. ORSTOM, Ser. Oceanogr., 1974, vol. 12, no. 3, pp. 187–201.

    Google Scholar 

  21. Hilburn, K.A., Meissner, T., Wentz, F.J., and Brown, S.T., Ocean vector winds from WindSat two-look polarimetric radiances, IEEE Trans. Geosci. Remote Sens., 2016, vol. 54, pp. 918–931. https://doi.org/10.1109/TGRS.2015.2469633

    Article  Google Scholar 

  22. Kara, A.B., Metzger, E.J., and Bourassa, M.A., Ocean current and wave effects on wind stress drag coefficient over the global ocean, Geophys. Res. Lett., 2007, L01604. https://doi.org/10.1029/2006GL027849

  23. Kara, A.B., Wallcraft, A.J., Barron, C.N., Metzger, E.J., Hurlburt, H.E., and Bourassa, M.A., Accuracy of 10m wind speeds from satellites and NWP products near land–sea boundaries, J. Geophys. Res., 2008, vol. 113, no. C10. https://doi.org/10.1029/2007JC004516

  24. Liu, W.T. and Tang, W., Equivalent Neutral Wind, Pasadena, Calif.: NASA JPL, 1996, JPL Publ. 96-17.

  25. Mears, C.A., Scott, J., Wentz, F.J., Ricciardulli, L., Leidner, S.M., Hoffman, R., and Atlas, R., A near-real-time version of the cross-calibrated multiplatform (CCMP) ocean surface wind velocity data set, J. Geophys. Res.: Oceans, 2019, vol. 124, pp. 6997–7010. https://doi.org/10.1029/2019JC015367

    Article  Google Scholar 

  26. Meissner, T., Smith, D., and Wentz, F., A 10-year intercomparison between collocated special sensor microwave imager oceanic surface wind speed retrievals and global analyses, J. Geophys. Res., 2001, vol. 106, pp. 11731–11742. https://doi.org/10.1029/1999JC000098

    Article  Google Scholar 

  27. Minas, H.J., Codispoti, L., and Dugdale, R., Nutrients and primary production in the upwelling region off Northwest Africa, Rapp. P.-V. Reun. Cons. Int. Explor. Mer, 1982, vol. 180, pp. 148–183.

    Google Scholar 

  28. Polonsky, A.B. and Serebrennikov, A.N., Long-term sea surface temperature trends in the Canary upwelling zone and their causes, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 1062–1067. https://doi.org/10.1134/S0001433818090281

    Article  Google Scholar 

  29. Polonsky, A.B. and Serebrennikov, A.N., On the change in the ocean surface temperature in the Benguela upwelling region. Part I: Season cycle, Izv., Atmos. Ocean. Phys., 2019a, vol. 55, no. 9, pp. 1050–1059. https://doi.org/10.1134/S0001433819090391

    Article  Google Scholar 

  30. Polonsky, A.B. and Serebrennikov, A.N., On the change in the sea surface temperature in the Benguela upwelling region: Part II. Long-term tendencies, Izv., Atmos. Ocean. Phys., 2019b, vol. 56, no. 9, pp. 970–978. https://doi.org/10.1134/S0001433820090200

  31. Polonsky, A.B. and Serebrennikov, A.N., Intensification of eastern boundary upwelling systems in the Atlantic and Pacific oceans, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 6, pp. 422–429. https://doi.org/10.3103/S1068373920060059

    Article  Google Scholar 

  32. Polonsky, A.B. and Serebrennikov, A.N., Modified technique for calculating the parameters of climatic variability of upwelling by thermal index, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no.9, pp. 1137–1145. https://doi.org/10.1134/S0001433821090590

    Article  Google Scholar 

  33. Ross, D.B., Cardone, V.J., Overland, J., McPherson, R.D., Pierson, W.J., Jr., and Yu, T., Oceanic surface winds, Adv. Geophys., 1985, vol. 27, pp. 101–138. https://doi.org/10.1016/S0065-2687(08)60404-5

    Article  Google Scholar 

  34. Schwing, F.B., Farrell, M.O., and Steger, J.M., Coastal upwelling indices west coast of North America, NOAA Tech. Rep. NMFS SWFSC 231, Seattle, Wash.: NOAA, 1996.

    Google Scholar 

  35. Simmons, A., Uppala, S., Dee, D., and Kobayashi, S., ERA-Interim: New ECMWF reanalysis products from 1989 onwards, ECMWF Newsl., 2011, vol. 110, pp. 25–35.

    Google Scholar 

  36. Stommel, H.M., The Gulf Stream. A Physical and Dynamical Description, Berkeley: Univ. of California Press, 1958.

    Book  Google Scholar 

  37. Tim, N., Zorita, E., and Hünicke, B., Decadal variability and trends of the Benguela upwelling system as simulated in a high ocean-only simulation, Ocean Sci., 2015, vol. 11, pp. 483–502. https://doi.org/10.5194/os-11-483-2015

    Article  Google Scholar 

  38. Upwelling: Mechanisms, Ecological Effects and Threats to Biodiversity, Fischer, W.E. and Green A.B., Eds., New York: Nova Sci. Publ., 2013, pp. 59–76.

    Google Scholar 

  39. Varela, R., Álvarez, I., Santos, F., et al., Has upwelling strengthened along worldwide coasts over 1982–2010?, Sci. Rep., 2015, vol. 5, id 10016. https://doi.org/10.1038/srep10016

  40. Zeng, L. and Levy, G., Space and time aliasing structure in monthly mean polar-orbiting satellite data, J. Geophys. Res., 1995, vol. 100, no. D3, pp. 5133–5142. https://doi.org/10.1029/94JD03252

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our gratitude to the anonymous reviewer for a highly professional and friendly assessment of the first version of the manuscript and constructive suggestions for its improvement.

Funding

This paper was prepared as part of the subject of state assignment no. 0012-2019-0002, “Fundamental Studies of Climate-System Processes That Determine the Spatiotemporal Variability of the Natural Environment on a Global and Regional Scale.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Polonsky.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polonsky, A.B., Serebrennikov, A.N. Long-Term Tendencies of Intensity of Eastern Boundary Upwelling Systems Assessed from Different Satellite Data. Part 1: Atlantic Upwellings. Izv. Atmos. Ocean. Phys. 57, 1658–1669 (2021). https://doi.org/10.1134/S0001433821120161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821120161

Keywords:

Navigation