Skip to main content
Log in

Anomalous Ozone Depletion in the Arctic from January to April 2020: Polar Vortex Dynamics under the Influence of Planetary Waves

  • USE OF SPACE INFORMATION ABOUT THE EARTH SATELLITE STUDIES OF THE ARCTIC
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In the winter–spring period of 2020, the unprecedented destruction of stratospheric ozone over the Arctic (in terms of duration and depth) was observed. For the first time in 42 years of observations, a decrease in ozone was recorded within 4 months, which is comparable in duration to the Antarctic ozone hole. At the same time, the average total ozone content over the Arctic reached its minimum values for 1979–2020 for 57% of the time from January to April 2020. The duration and depth of ozone depletion over the polar region are determined by the dynamics of the stratospheric polar vortex. The polar vortex weakening, as a rule, is observed under conditions of high activity of vertically propagating planetary waves. In the winter–spring period 2019/2020, a relatively low activity of planetary waves was observed. In this paper, the Arctic ozone anomaly of 2020 is considered, which was formed in the conditions of strengthening in the polar vortex with a decrease in wave activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ageyeva, V.Yu., Gruzdev, A.N., Elokhov, A.S., Mokhov, I.I., and Zueva, N.E., Sudden stratospheric warmings: statistical characteristics and influence on NO2 and O3 total contents, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 5, pp. 477–486.

    Article  Google Scholar 

  2. Borovko, I.V. and Krupchatnikov, V.N., The influence of stratospheric polar vortex dynamics upon lower tropospheric circulation, Numer. Anal. Appl., 2009, vol. 12, no. 2, pp. 118–130.

    Article  Google Scholar 

  3. Conway, J., Bodeker, G., and Cameron, C., Bifurcation of potential vorticity gradients across the Southern Hemisphere stratospheric polar vortex, Atmos. Chem. Phys., 2018, vol. 18, no. 11, pp. 8065–8077. https://doi.org/10.5194/acp-18-8065-2018

    Article  Google Scholar 

  4. De la Cámara, A., Mechoso, C.R., Ide, K., Walterscheid, R., and Schubert, G., Polar night vortex breakdown and large-scale stirring in the southern stratosphere, Clim. Dyn., 2010, vol. 35, no. 6, pp. 965–975. https://doi.org/10.1007/s00382-009-0632-6

    Article  Google Scholar 

  5. Finlayson-Pitts, B.J. and Pitts, J.N., Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Academic Press, 2000.

    Google Scholar 

  6. Flury, T., Hocke, K., Haefele, A., Kämpfer, N., and Lehmann, R., Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming, J. Geophys. Res., 2009, vol. 114, no. 18, D18302. https://doi.org/10.1029/2009JD011940

    Article  Google Scholar 

  7. Grooß, J.-U., Müller, R., Konopka, P., Steinhorst, H.-M., Engel, A., Möbius, T., and Volk, C.M., The impact of transport across the polar vortex edge on Match ozone loss estimates, Atmos. Chem. Phys., 2008, vol. 8, no. 3, pp. 565–578. https://doi.org/10.5194/acp-8-565-2008

    Article  Google Scholar 

  8. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., et al., The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 2020, vol. 146, no. 729, pp. 1–51. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  9. Hoshi, K., Ukita, J., Honda, M., Iwamoto, K., Nakamura, T., Yamazaki, K., Dethloff, K., Jaiser, R., and Handorf, D., Poleward eddy heat flux anomalies associated with recent Arctic sea ice loss, Geophys. Res. Lett., 2017, vol. 44, no. 1, pp. 446–454. https://doi.org/10.1002/2016GL071893

    Article  Google Scholar 

  10. Iida, C., Hirooka, T., and Eguchi, N., Circulation changes in the stratosphere and mesosphere during the stratospheric sudden warming event in January 2009, J. Geophys. Res., 2014, vol. 119, no. 12, pp. 7104–7115. https://doi.org/10.1002/2013JD021252

    Article  Google Scholar 

  11. Kim, B.-M., Son, S.-W., Min, S.-K., Jeong, J.-H., Kim, S.-J., Zhang, X., Shim, T., and Yoon, J.-H., Weakening of the stratospheric polar vortex by Arctic sea-ice loss, Nat. Commun., 2014, vol. 5, id 4646. https://doi.org/10.1038/ncomms5646

  12. Kuttippurath, J. and Nikulin, G., A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010, Atmos. Chem. Phys., 2012, vol. 12, no. 17, pp. 8115–8129. https://doi.org/10.5194/acp-12-8115-2012

    Article  Google Scholar 

  13. Labitzke, K. and Kunze, M., On the remarkable Arctic winter in 2008/2009, J. Geophys. Res., 2009, vol. 114, D00I02. https://doi.org/10.1029/2009JD012273

    Article  Google Scholar 

  14. Manney, G.L., Livesey, N.J., Santee, M.L., Froidevaux, L., Lambert, A., Lawrence, Z.D., Millan, L.F., Neu, J.L., Read, W.G., Schwartz, M.J., and Fuller, R.A., Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters, Geophys. Res. Lett., 2020, vol. 47, no. 16, e2020GL089063. https://doi.org/10.1029/2020GL089063

  15. Martius, O., Polvani, L.M., and Davies, H.C., Blocking precursors to stratospheric sudden warming events, Geophys. Res. Lett., 2009, vol. 36, no. 14, L14806. https://doi.org/10.1029/2009GL038776

    Article  Google Scholar 

  16. Mohanakumar, K., Stratosphere Troposphere Interactions: An Introduction, Springer Netherlands, 2008.

    Book  Google Scholar 

  17. Newman, P.A., Chemistry and dynamics of the Antarctic ozone hole, in The Stratosphere: Dynamics, Transport, and Chemistry, Washington, DC: Am. Geophys. Union, 2010, vol. 190, pp. 157–171. https://doi.org/10.1002/9781118666630.ch9.

  18. Newman, P.A., Kawa, S.R., and Nash, E.R., On the size of the Antarctic ozone hole, Geophys. Res. Lett., 2004, vol. 31, no. 21, L21104. https://doi.org/10.1029/2004GL020596

    Article  Google Scholar 

  19. Polvani, L.M. and Waugh, D.W., Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes, J. Clim., 2004, vol. 17, no. 18, pp. 3548–3554. https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2

    Article  Google Scholar 

  20. Smith, K.L., Kushner, P.J., and Cohen, J., The role of linear interference in northern annular mode variability associated with Eurasian snow cover extent, J. Clim., 2011, vol. 24, no. 23, pp. 6185–6202. https://doi.org/10.1175/JCLI-D-11-00055.1

    Article  Google Scholar 

  21. Solomon, S., Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 1999, vol. 37, no. 3, pp. 275–316. https://doi.org/10.1029/1999RG900008

    Article  Google Scholar 

  22. Solomon, S., Garcia, R.R., Rowland, F.S., and Wuebbles, D.J., On the depletion of Antarctic ozone, Nature, 1986, vol. 321, pp. 755–758. https://doi.org/10.1038/321755a0

    Article  Google Scholar 

  23. Torre, L., Garcia, R.R., Barriopedro, D., and Chandran, A., Climatology and characteristics of stratospheric sudden warmings in the whole atmosphere community climate model, J. Geophys. Res., 2012, vol. 117, no. 4, D04110. https://doi.org/10.1029/2011JD016840

    Article  Google Scholar 

  24. Vargin, P.N. and Volodin, E.M., Analysis of the reproduction of dynamic processes in the stratosphere using the climate model of the Institute of Numerical Mathematics, Russian Academy of Sciences, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 1, pp. 1–15.

    Article  Google Scholar 

  25. Varotsos, C., The extraordinary events of the major, sudden stratospheric warming, the diminutive Antarctic ozone hole, and its split in 2002, Environ. Sci. Pollut. Res., 2004, vol. 11, no. 6, pp. 405–411. https://doi.org/10.1007/BF02979661

    Article  Google Scholar 

  26. Varotsos, C.A., Efstathiou, M.N., and Christodoulakis, J., The lesson learned from the unprecedented ozone hole in the Arctic in 2020: A novel nowcasting tool for such extreme events, J. Atmos. Sol.-Terr. Phys., 2020, vol. 207, 105330. https://doi.org/10.1016/j.jastp.2020.105330

    Article  Google Scholar 

  27. Waugh, D.W. and Polvani, L.M., Stratospheric polar vortices, in The Stratosphere: Dynamics, Transport, and Chemistry, Washington, DC: Am. Geophys. Union, 2010, vol. 190, pp. 43–57.

    Google Scholar 

  28. Waugh, D.W. and Randel, W.J., Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics, J. Atmos. Sci., 1999, vol. 56, no. 11, pp. 1594–1613. https://doi.org/10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2

    Article  Google Scholar 

  29. World Meteorological Organization, Abridged final report of the seventh session of the commission for atmospheric sciences, Manila, 27 February–10 March 1978, WMO Rep. 509, Geneva: WMO, 1978.

  30. Young, P.J., Rosenlof, K.H., Solomon, S., Sherwood, S.C., Fu, Q., and Lamarque, J.-F., Changes in stratospheric temperatures and their implications for changes in the Brewer–Dobson circulation, 1979–2005, J. Clim., 2012, vol. 25, no. 5, pp. 1759–1772. https://doi.org/10.1175/2011JCLI4048.1

    Article  Google Scholar 

  31. Zuev, V.V. and Savelieva, E., Arctic polar vortex dynamics during winter 2006/2007, Polar Sci., 2020, vol. 25, 100532. https://doi.org/10.1016/j.polar.2020.100532

    Article  Google Scholar 

  32. Zuev, V.V., Zueva, N.E., Ageeva, V.Yu., and Savel’eva, E.S., Features of the stratospheric circulation dynamics due to the January 2009 sudden stratospheric warming, Opt. Atmos. Okeana, 2017, vol. 30, no. 4, pp. 310–314.

    Google Scholar 

Download references

Funding

This study was carried out as part of state budgetary theme no. АААА-А17-117013050038-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Savelieva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, V.V., Savelieva, E.S. Anomalous Ozone Depletion in the Arctic from January to April 2020: Polar Vortex Dynamics under the Influence of Planetary Waves. Izv. Atmos. Ocean. Phys. 57, 1066–1075 (2021). https://doi.org/10.1134/S0001433821090681

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821090681

Keywords:

Navigation