Skip to main content
Log in

Comparison between In Situ and Satellite Multiscale Temperature Data for Russian Arctic Cities for Winter Conditions

  • USE OF SPACE INFORMATION ABOUT THE EARTH SATELLITE STUDIES OF THE ARCTIC
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This study compares three approaches to microclimate research by the example of Russian Arctic cities in winter conditions: (1) using high-resolution thermal images by the Landsat 8 satellite, (2) using low-resolution images of the MODIS imaging system, and (3) using direct measurements of the surface air temperature. The latter involves observations of automatic weather stations and temperature sensors of the Urban Heat Island Arctic Research Campaign (UHIARC) network and Roshydromet weather stations. Two methods for calculating the land surface temperature (LST) from Landsat 8 satellite images have been considered: the first method is based on the atmospheric correction of images using the MODTRAN radiation transfer model and tabulated emissivity values for different land cover types, and the second method uses no atmospheric correction. The study was performed for the cities of Apatity, Vorkuta, Salekhard, Nadym, and Novy Urengoy. The land surface temperatures calculated from Landsat 8 images without atmospheric correction have been shown to agree with MODIS data and observations better than the results obtained with atmospheric correction. This indicates an inaccuracy in the value of surface emissivity. For a number of cases, the spatial variation patterns of the land surface and air temperatures are closely related; here, both types of data are indicative of the effect of urban heat island with urban–rural temperature differences up to 4°C in the daytime. These results are fundamentally different from those obtained previously for lower latitudes, which indicates the prospects of using high-resolution satellite temperature data for mapping and further studies of the microclimate of Arctic cities in winter conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Barsi, J.A., Schott, J.R., Palluconi, F.D., and Hook, S.J., Validation of a web-based atmospheric correction tool for single thermal band instruments, Proc. SPIE, Earth Obs. Syst. X, 2005, vol. 5882, 58820E. https://doi.org/10.1117/12.619990.

  2. Daly, C., Conklin, D.R., and Unsworth, M.H., Local atmospheric decoupling in complex topography alters climate change impacts, Int. J. Climatol., 2010, vol. 30, pp. 1857–1864. https://doi.org/10.1002/joc.2007

    Article  Google Scholar 

  3. Gornyi, V.I., Shilin, B.V., and Yasinskii, G.I., Teplovaya aerokosmicheskaya s"emka (Thermal Aerospace Imaging), Moscow: Nedra, 1993.

  4. Grishchenko, M.Y. and Chernulich, K.K., The relationship between ground and space temperature data for the case of the Wrangel and Kunashir islands, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2019, vol. 63, no. 5, pp. 566–575.

    Google Scholar 

  5. Ho, H.C., Knudby, A., Xu, Y., Hodul, M., and Aminipouri, M., A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area, Sci. Total Environ., 2016, vol. 544, pp. 929–938. https://doi.org/10.1016/j.scitotenv.2015.12.021

    Article  Google Scholar 

  6. Hori, M., Aoki, T., Tanikawa, T., Motoyoshi, H., Hachikubo, A., Sugiura, K., Yasunari, T.J., Eide, H., Storvold, R., Nakajima, Y., and Takahashi, F., In-situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window, Remote Sens. Environ., 2006, vol. 100, no. 4, pp. 486–502. https://doi.org/10.1016/j.rse.2005.11.001

    Article  Google Scholar 

  7. Klimaticheskie kharakteristiki usloviya rasprostraneniya primesei v atmosfere: spravochnoe posobie (Climate Characteristics and Conditions of Pollutant Transport in the Atmosphere: A Handbook), Bezuglaya, E.Yu. and Berlyand, M.E., Eds., Leningrad: Gidrometeoizdat, 1983.

    Google Scholar 

  8. Konstantinov, P.I., Grishchenko, M.Y., and Varentsov, M.I., Mapping urban heat islands of Arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast), Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 9, pp. 992–998.

    Article  Google Scholar 

  9. Konstantinov, P., Varentsov, M., and Esau, I., A high density urban temperature network deployed in several cities of Eurasian Arctic, Environ. Res. Lett., 2018, vol. 13, no. 7, 75007. https://doi.org/10.1088/1748-9326/aacb84

    Article  Google Scholar 

  10. Kriksunov, L.Z., Spravochnik po osnovam infrakrasnoi tekhniki (Handbook of the Basics of Infrared Technology), Moscow: Sovetskoe radio, 1978.

  11. Landsberg, G.E., The Urban Climate, New York: Academic, 1981; Leningrad: Gidrometeoizdat, 1983.

  12. Malevich, S.B. and Klink, K., Relationships between snow and the wintertime Minneapolis urban heat island, J. Appl. Meteorol. Climatol., 2011, vol. 50, no. 9, pp. 1884–1894. https://doi.org/10.1175/JAMC-D-11-05.1

    Article  Google Scholar 

  13. Mathew, A., Khandelwal, S., and Kaul, N., Analysis of diurnal surface temperature variations for the assessment of surface urban heat island effect over Indian cities, Energy Build., 2018, vol. 159, pp. 271–295. https://doi.org/10.1016/j.enbuild.2017.10.062

    Article  Google Scholar 

  14. Miles, V. and Esau, I., Seasonal and spatial characteristics of urban heat islands (UHIs) in northern West Siberian cities, Remote Sens., 2017, vol. 9, no. 10, id 989. https://doi.org/10.3390/rs9100989

  15. Mironova, V., Shartova, N., Beljaev, A., Varentsov, M., and Grishchenko, M., Effects of climate change and heterogeneity of local climates on the development of malaria parasite (Plasmodium vivax) in Moscow megacity region, Int. J. Environ. Res. Public Health, 2019, vol. 16, no. 5, id 694. https://doi.org/10.3390/ijerph16050694

  16. Niclos, R., Valiente, J.A., Barbera, M.J., and Caselles, V., Land surface air temperature retrieval from EOS-MODIS images, IEEE Geosci. Remote Sens. Lett., 2014, vol. 11, no. 8, pp. 1380–1384. https://doi.org/10.1109/LGRS.2013.2293540

    Article  Google Scholar 

  17. Ojeh, V., Balogun, A., and Okhimamhe, A., Urban–rural temperature differences in Lagos, Climate, 2016, vol. 4, no. 2, id 29. https://doi.org/10.3390/cli4020029

  18. Oke, T.R., Mills, G., Christen, A., and Voogt, J.A., Urban Climates, Cambridge: Cambridge Univ. Press, 2017. https://doi.org/10.1017/9781139016476.

  19. Rosas, J., Houborg, R., and McCabe, M.F., Sensitivity of Landsat 8 surface temperature estimates to atmospheric profile data: A study using MODTRAN in dryland irrigated systems, Remote Sens., 2017, vol. 9, no. 10, pp. 1–27. https://doi.org/10.3390/rs9100988

    Article  Google Scholar 

  20. Rouse, W.R., Microclimate at arctic tree line 1. Radiation balance of tundra and forest, Water Resour. Res., 1984, vol. 20, no. 1, pp. 57–66. https://doi.org/10.1029/WR020i001p00057

    Article  Google Scholar 

  21. Shahraiyni, H.T. and Sodoudi, S., High-resolution air temperature mapping in urban areas, Therm. Sci., 2017, vol. 21, no. 6A, pp. 2267–2286. https://doi.org/10.2298/TSCI150922094T

    Article  Google Scholar 

  22. Shandas, V., Voelkel, J., Williams, J., and Hoffman, J., Integrating satellite and ground measurements for predicting locations of extreme urban heat, Climate, 2019, vol. 7, no. 1, id 5. https://doi.org/10.3390/cli7010005

  23. Sheng, L., Tang, X., You, H., Gu, Q., and Hu, H., Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China, Ecol. Indic., 2017, vol. 72, pp. 738–746. https://doi.org/10.1016/j.ecolind.2016.09.009

    Article  Google Scholar 

  24. Stankevich, S.A., Filippovich, V.E., Lubskii, N.S., Krylova, A.B., Kritsuk, S.G., and Brovkina, O.V., Intercalibration of the methods for retrieval of thermodynamic temperature of urbanized area surfaces from thermal space imagery, Ukr. Zh. Distantsionnogo Zondirovaniya Zemli, 2015, vol. 7, pp. 12–21.

    Google Scholar 

  25. Sun, H., Chen, Y., and Zhan, W., Comparing surface- and canopy-layer urban heat islands over Beijing using MODIS data, Int. J. Remote Sens., 2015, vol. 36, no. 21, pp. 5448–5465. https://doi.org/10.1080/01431161.2015.1101504

    Article  Google Scholar 

  26. Svensson, M.K. and Eliasson, I., Diurnal air temperatures in built-up areas in relation to urban planning, Landscape Urban Plann., 2002, vol. 61, no. 1, pp. 37–54. https://doi.org/10.1016/S0169-2046(02)00076-2

    Article  Google Scholar 

  27. Trinh, L.H., Terekhin, E.A., and Vu, D.T., Remote sensing methods for determining land surface emissivity from Landsat multispectral imagery (the case study of Bac Binh district, Binh Thuan province, Vietnam), Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2015, vol. 12, no. 6, pp. 59–68.

    Google Scholar 

  28. Varentsov, M.I., Konstantinov, P.I., Samsonov, T.E., and Repina, I.A., Investigation of the urban heat island phenomenon during polar night with the help of experimental measurements and remote sensing in the city of Norilsk, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014, vol. 11, no. 4, pp. 329–337.

    Google Scholar 

  29. Varentsov, M., Konstantinov, P., Baklanov, A., Esau, I., Miles, V., and Davy, R., Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city, Atmos. Chem. Phys., 2018, vol. 18, no. 23, pp. 17573–17587. https://doi.org/10.5194/acp-18-17573-2018

    Article  Google Scholar 

  30. Varentsov, M.I., Grishchenko, M.Y., and Wouters, H., Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling, Geogr. Environ. Sustain., 2019, vol. 12, no. 4, pp. 74–95. https://doi.org/10.24057/2071-9388-2019-10

    Article  Google Scholar 

  31. Voogt, J.A. and Oke, T.R., Thermal remote sensing of urban climates, Remote Sens. Environ., 2003, vol. 86, no. 3, pp. 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8

    Article  Google Scholar 

  32. Wan, Z., New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product, Remote Sens. Environ., 2014, vol. 140, pp. 36–45. https://doi.org/10.1016/j.rse.2013.08.027

    Article  Google Scholar 

  33. Wan, Z., Zhang, Y., Zhang, Q., and Li, Z.L., Quality assessment and validation of the MODIS global land surface temperature, Int. J. Remote Sens., 2004, vol. 25, no. 1, pp. 261–274. https://doi.org/10.1080/0143116031000116417

    Article  Google Scholar 

  34. Warren, S.G., Optical properties of snow, Rev. Geophys. Space Phys., 1982, vol. 20, no. 1, pp. 67–89. https://doi.org/10.1029/RG020i001p00067

    Article  Google Scholar 

  35. Weng, Q., Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends, ISPRS J. Photogramm. Remote Sens., 2009, vol. 64, no. 4, pp. 335–344. https://doi.org/10.1016/j.isprsjprs.2009.03.007

    Article  Google Scholar 

  36. Wetzel, C. and Brümmer, B., An Arctic inversion climatology based on the European Centre Reanalysis ERA-40, Meteorol. Z., 2011, vol. 20, no. 6, pp. 589–600. https://doi.org/10.1127/0941-2948/2011/0295

    Article  Google Scholar 

  37. Xiong, Y. and Chen, F., Correlation analysis between temperatures from Landsat thermal infrared retrievals and synchronous weather observations in Shenzhen, China, Remote Sens. Appl. Soc. Environ., 2017, vol. 7, pp. 40–48. https://doi.org/10.1016/j.rsase.2017.06.002

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project nos. 18-05-00715 A and 20-55-71004 Arktika_t.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Varentsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varentsov, M.I., Grischenko, M.Y. & Konstantinov, P.I. Comparison between In Situ and Satellite Multiscale Temperature Data for Russian Arctic Cities for Winter Conditions. Izv. Atmos. Ocean. Phys. 57, 1087–1097 (2021). https://doi.org/10.1134/S0001433821090668

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821090668

Keywords:

Navigation