Skip to main content
Log in

Shelf Waves in the Great Australian Bight Based on Satellite Altimetry Data

  • PHYSICAL BASES AND METHODS OF STUDYING THE EARTH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this study we analyze shelf waves in the Great Australian Bight using satellite altimetry data. The phase velocity of the first mode of topographic waves is shown to be 1.8 m/s for an average shelf width of 200 km and 2.7 m/s for a maximal shelf width of 300 km. The estimates of the phase velocity are in good agreement with the estimates calculated from the spacetime spectra. Waves with periods of 22, 30, and 38 days are identified from the graphs of two-dimensional FFT spectra. The wavelengths of the identified periods vary over a wide range from 1500 to 2500 km. The theoretical dispersion curves correspond to the empirical parameters of topographic waves for a period of 38 days. Using the maximal cross-correlation method (averaging over the period 1993–2018), we can divide the Great Australian Bight water area into two parts: on the shelf, waves are directed eastward at an average velocity of 20 cm/s (averaging over 26 years); in the rest of the water area, the Rossby waves propagate westward at a velocity of up to 15 cm/s. The method of decomposing time series into fluctuations of a certain period confirm the results of the analysis of two-dimensional spectra. The intensity of oscillations is found to vary significantly in time and space. Spatiotemporal diagrams of level fluctuations with periods of 22, 30, and 38 days along the contours of 50, 100, and 200 m show a significant variability of the wave velocity both in time and on various segments of the contour. For all three contours, the wave velocity increases in the eastern part of the Great Australian Bight compared to other parts of the shelf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Belonenko, T.V., Zakharchuk, E.A., and Fuks, V.R., Gradientno–vihrevye volny v okeane (Gradient–Vortex Waves in the Ocean), St. Petersburg: SpbGU, 2004.

  2. Belonenko, T.V. and Frolova, A.V., Antarctic circumpolar current as a waveguide for Rossby waves and mesoscale eddies, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019, vol. 16, no. 1, pp. 181–190. https://doi.org/10.21046/2070-7401-2019-16-1-181-190

    Article  Google Scholar 

  3. Belonenko, T.V., Volkov, D.L., and Koldunov, A.V., Shelf waves in the Beaufort Sea in a high-resolution ocean model, Oceanology (Engl. Transl.), 2018, vol. 58, no. 6, pp. 778–785. https://doi.org/10.1134/S0001437018060024

  4. Chelton, D.B., De Szoeke, R.A., Schlax, M.G., El Naggar, K., and Siwertz, N., Geographical variability of the first-baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 1998, vol. 28, pp. 433–460.

    Article  Google Scholar 

  5. Church, A.J., Freeland, H.J., and Smith, R.L., Coastal trapped waves on the east Australian continental shelf. Part I: Propagation of modes, J. Phys. Oceanogr., 1986a, vol. 16, pp. 1929–1943.

    Article  Google Scholar 

  6. Church, A.J., White, N.J., Clarke, A.J., Freeland, H.J., and Smith, R.L., Coastal-trapped waves on the east Australian continental shelf. Part II: Modal verification, J. Phys. Oceanogr., 1986b, vol. 16, pp. 1945–1957.

    Article  Google Scholar 

  7. Clarke, A.J., Origin of the coastally trapped waves observed during the Australian coastal experiment, J. Phys. Oceanogr., 1987, vol. 17, pp. 1847–1859. https://doi.org/10.1175/1520-0485(1987)017<1847:ootctw>

    Article  Google Scholar 

  8. Cleveland, R.B., Cleveland, W.S., McRae, J.E., and Terpenning, I.J., STL: A seasonal-trend decomposition procedure based on loess, J. Off. Stat., 1990, vol. 6, no. 1, pp. 3–33.

    Google Scholar 

  9. De-Leon, Y. and Paldor, N., Trapped planetary (Rossby) waves observed in the Indian Ocean by satellite borne altimeters, Ocean Sci., 2017, vol. 13 P, pp. 483–494. https://doi.org/10.5194/os-13-483-2017

  10. Efimov, V.V., Kulikov, E.A., Rabinovich, A.B., and Fain, I.V., Volny v pogranichnykh oblastyakh okeana (Waves in the Border Zones of the World Ocean), Leningrad: Gidrometeoizdat, 1985.

  11. Freeland, H.J., Boland, F.M., Church, J.A., Clarke, A.J., Forbes, A.M.G., Huyer, A., Smith, R.L., Thompson, R.O.R.Y., and White, N.J., The Australian Coastal Experiment: A search for coastal-trapped waves, J. Phys. Oceanogr., 1986, vol. 16, pp. 1230–1249. https://doi.org/10.1175/1520-0485(1986)016<1230:TACEAS>2.0.CO;2

    Article  Google Scholar 

  12. Fu, L.-L., Pattern and velocity of propagation of the global ocean eddy variability, J. Geophys. Res., 2009, vol. 114, C11017. https://doi.org/10.1029/2009JC005349

    Article  Google Scholar 

  13. Furue, R., Guerreiro, K., Phillips, H.E., McCreary, J.P., and Bindoff, N.L., On the Leeuwin Current System and its linkage to zonal flows in the South Indian Ocean as inferred from a gridded hydrography, J. Phys. Oceanogr., 2017, vol. 47, pp. 583–602. https://doi.org/10.1175/JPO-D-16-0170.1

    Article  Google Scholar 

  14. Gill, A., Atmosphere–Ocean Dynamics, London: Academic, 1982; Moscow: Mir, 1986.

  15. Gill, A.E. and Clarke, A.J., Wind-induced upwelling, coastal currents and sea-level changes, Deep-Sea Res., 1974, vol. 21, pp. 325–345.

    Google Scholar 

  16. Gnevyshev, V.G., Frolova, A.V., Kubryakov, A.A., Sobko, Y.V., and Belonenko, T.V., Interaction between Rossby waves and jet flow: Basic equations and verification for the Antarctic circumpolar current, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 5, pp. 412–422.

    Article  Google Scholar 

  17. Hamon, B.V., Continental shelf waves and the effects of atmospheric pressure and wind stress on sea level, J. Geophys. Res., 1966, vol. 71, pp. 2883–2893.

    Article  Google Scholar 

  18. Hamon, B.V. and Hannan, E.J., Estimating relations between time series, J. Geophys. Res., 1963, vol. 68, pp. 6033–6041.

    Article  Google Scholar 

  19. Holland, D.M. and Webster, I.T., The effects of stratification and alongshore currents on the propagation of coastal-trapped waves, Cont. Shelf Res., 1994, vol. 14, pp. 57–77. https://doi.org/10.1016/0278-4343(94)90005-1

    Article  Google Scholar 

  20. Kajiura, K., Effect of stratification on long period trapped waves on the shelf, J. Oceanogr. Soc. Jpn., 1974, vol. 30, pp. 271–281.

    Article  Google Scholar 

  21. Le Blond, P. and Mysak, L., Waves in the Ocean, Elsevier, 1977; Moscow: Mir, 1981.

  22. Liao, F. and Wang, X.H., A study of low-frequency, wind-driven, coastal-trapped waves along the southeast coast of Australia, J. Phys. Oceanogr., 2018, vol. 48, pp. 301–316. https://doi.org/10.1175/JPO-D-17-0046.1

    Article  Google Scholar 

  23. Maiwa, K., Masumoto, Y., and Yamagata, T., Characteristics of coastal trapped waves along the southern and eastern coasts of Australia, J. Oceanogr., 2010, vol. 66, pp. 243–258. https://doi.org/10.1007/s10872-010-0022-z

    Article  Google Scholar 

  24. Merrifield, A.M. and Middleton, J.H., The influence of strongly varying topography on coastal-trapped waves at the southern Great Barrier Reef, J. Geophys. Res., 1994, vol. 99, pp. 10193–10205.

    Article  Google Scholar 

  25. Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., and Picot, N., DUACS DT2014: The new multi-mission altimeter dataset reprocessed over 20 years, Ocean Sci., 2016, vol. 12, pp. 1067–1090. https://doi.org/10.5194/os-12-1067-2016

    Article  Google Scholar 

  26. Ridgway, K.R. and Godfrey, J.S., The source of the Leeuwin Current seasonality, J. Geophys. Res.: Oceans, 2015, vol. 120, pp. 6843–6864. https://doi.org/10.1002/2015JC011049

    Article  Google Scholar 

  27. Robinson, A.R., Continental shelf waves and response of sea level to weather systems, J. Geophys. Res., 1964, vol. 69, pp. 367–368.

    Article  Google Scholar 

  28. Volkov, D.L., Belonenko, T.V., and Foux, V.R., Puzzling over the dynamics of the Lofoten Basin—a sub-Arctic hot spot of ocean variability, Geophys. Res. Lett., 2013, vol. 40, pp. 738–743. https://doi.org/10.1002/grl.50126

    Article  Google Scholar 

  29. Wang, D.-P. and Mooers, C.N.K., Coastal-trapped waves in a continuously stratified ocean, J. Phys. Oceanogr., 1976, vol. 6, no. 6, pp. 853–863.

    Article  Google Scholar 

  30. Weijer, W., An almost-free barotropic mode in the Australian–Antarctic basin, Geophys. Res. Lett., 2010, vol. 37, no. 10, L10602. https://doi.org/10.1029/2010GL042657

    Article  Google Scholar 

  31. Woodham, R., Brassington, G.B., Robertson, R., and Alves, O., Propagation characteristics of coastally trapped waves on the Australian continental shelf, J. Geophys. Res.: Oceans, 2013, vol. 118, pp. 4461–4473. https://doi.org/10.1002/jgrc.20317

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-05-00066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sandalyuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandalyuk, N.V., Belonenko, T.V. & Koldunov, A.V. Shelf Waves in the Great Australian Bight Based on Satellite Altimetry Data. Izv. Atmos. Ocean. Phys. 57, 1117–1126 (2021). https://doi.org/10.1134/S0001433821090619

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821090619

Keywords:

Navigation