Skip to main content
Log in

Information Content of Spectral Vegetation Indices for Assessing the Weed Infestation of Crops Using Ground-Based and Satellite Data

  • METHODS AND PROCESSING TOOLS AND INTERPRETATION OF SPACE INFORMATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This paper presents the results of a study assessing the degree of weed infestation of wheat crops. They are obtained using optical ground-based and satellite spectral data with a 3-m spatial resolution from PlanetScope Dove satellites for 2019. The vegetation indices, including the normalized difference vegetation index (NDVI), the relative chlorophyll index (Chlorophyll Index Green—ClGreen or GCI), the modified soil-adjusted vegetation index (MSAVI2), and the visible atmospherically resistant index (VARI) are used in the interpretation of ground-based spectrometric and space images. This paper indicates the possibility of assessing the degree of weed infestation of agricultural fields. The higher the weed infestation, the lower the index values. The dynamics of VARI is found to be different from the dynamics of NDVI, ClGreen, and MSAVI2 during the growing season. The strong correlation between NDVI, ClGreen, and MSAVI2 and the weak correlation between VARI and other indices are observed. The possibility of identifying weedy sites in the agricultural fields is shown using the spatial distribution map of ClGreen dated August 2, 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Arkhipova, O.E., Kachalina, N.A., Tyutyunov, Yu.V., and Kovalev, O.V., Assessment of infestation of anthropogenic phytocenoses based on remote sensing data (on the example of common ragweed), Issled. Zemli Kosmosa, 2014, no. 6, pp. 15–26.

  2. Bondur, V.G., Modern approaches to processing large hyperspectral and multispectral aerospace data flows, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, 840–852.

    Article  Google Scholar 

  3. Bondur, V.G. and Vorobev, V.E., Satellite monitoring of impact Arctic regions, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 9, pp. 949–968.

    Article  Google Scholar 

  4. Che’Ya, N., Gupta, M., Doug, G., Lisle, A., Basnet, B., and Campbell, G., Spectral discrimination of weeds using hyperspectral radiometry, in Proc. 5th Asian Conf. on Precision Agriculture (ACPA), Jeju, Korea, 2013, p. 325.

  5. Gaznayee, H.A. and Al-Quraishi, A.M.F., Analysis of agricultural drought, rainfall, and crop yield relationships in Erbil province, the Kurdistan region of Iraq based on Landsat time-series MSAVI2, J. Adv. Res. Dyn. Control Syst., 2019, vol. 11, pp. 536–545. https://doi.org/10.5373/JARDCS/V11SP12/20193249

    Article  Google Scholar 

  6. Gitelson, A., Stark, R., Grits, U., and Rundquist, D.C., Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction, Int. J. Remote Sens., 2002, vol. 23, pp. 2537–2562.

    Article  Google Scholar 

  7. Gitelson, A.A., Viña, A., Arkebauer, T.J., Rundquist, D.C., Keydan, G., and Leavitt, B., Remote estimation of leaf area index and green leaf biomass in maize canopies, Geophys. Res. Lett., 2003, vol. 30, no. 5, 1248. https://doi.org/10.1029/2002GL016450

    Article  Google Scholar 

  8. Gopp, N.V., Savenkov, O.A., and Smirnov, A.V., Digital mapping of spring wheat yield based on vegetation indices and assessment of its changes depending on the properties of anthropogenically transformed soils, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019, vol. 16, no. 3, pp. 125–139.

    Article  Google Scholar 

  9. He, Y., Chen, F., Jia, H., Wang, L., and Bondur, V.G., Different drought legacies of rain-fed and irrigated croplands in a typical Russian agricultural region, Remote Sens., 2020, vol. 12, no. 11, id 1700.

  10. Herrmann, I., Shapira, U., Kinast, S., Karnieli, A., and Bonfil, D.J., Ground-level hyperspectral imagery for detecting weeds in wheat fields, Precis. Agric., 2013, vol. 14, pp. 637–659. https://doi.org/10.1007/s11119-013-9321-x

    Article  Google Scholar 

  11. Hese, S. and Schmullius, C., High spatial resolution image object classification for terrestrial oil spill contamination mapping in West Siberia, Int. J. Appl. Earth Obs. Geoinf., 2009, vol. 11, no. 2, pp. 130–141. https://doi.org/10.1016/j.jag.2008.12.002

    Article  Google Scholar 

  12. Hutto, K.C., Shaw, D.R., Byrd, J.D., and King, R.L., Differentiation of turfgrass and common weed species using hyperspectral radiometry, Weed Res., 2006, vol. 54, no. 2, pp. 335–339. https://doi.org/10.1614/WS-05-116R.1

    Article  Google Scholar 

  13. Ikenov, I.A., Information system for assessing the state of vegetation on agricultural fields, Vestn. Nauki, 2019, vol. 4, no. 5, pp. 485–491.

    Google Scholar 

  14. Lamba, D.W. and Brown, R.B., PA—precision agriculture: Remote-sensing and mapping of weeds in crops, J. Agric. Eng. Res., 2001, vol. 78, no. 2, pp. 117–125. https://doi.org/10.1006/jaer.2000.0630

    Article  Google Scholar 

  15. Martin, M.P., Barreto, L., Riaso, D., Fernandez-Quintanilla, C., and Vaughan, P., Assessing the potential of hyperspectral remote sensing for the discrimination of grassweeds in winter cereal crops, Int. J. Remote Sens., 2011, vol. 32, no. 1, pp. 49–67. https://doi.org/10.1080/01431160903439874

    Article  Google Scholar 

  16. Mikhailenko, I.M. and Voronkov, I.V., Methods for detection of weeds, pests and diseases of plants from remote sensing data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016, vol. 13, no. 3, pp. 72–83.

    Article  Google Scholar 

  17. Moran, J.A., Mitchell, A.K., Goodmanson, G., and Stockburger, K.A., Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: A comparison of methods, Tree Physiol., 2000, vol. 20, pp. 1113–1120. https://doi.org/10.1093/treephys/20.16.1113

    Article  Google Scholar 

  18. Petit, S., Boursault, A., Guilloux, M., Munier-Jolain, N., and Reboud, X., Weeds in agricultural landscapes. A review, Agron. Sustain. Dev., 2011, vol. 31, no. 2, pp. 309–317. https://doi.org/10.1051/agro/2010020

    Article  Google Scholar 

  19. Pflanz, M., Nordmeyer, H., and Schirrmann, M., Weed mapping with UAS imagery and a bag of visual words based image classifier, Remote Sens., 2018, vol. 10, no. 10, id 1530. https://doi.org/10.3390/rs10101530

  20. Pflugmacher, D., Krankina, O., Cohen, W.B., and Friedl, M.A., Sulla Menashe, D., Kennedy, R.E., Nelson, P., Loboda, T.V., Kuemmerle, T., Dyukarev, E., Elsakov, V., and Kharuk, V.I., Comparison and assessment of coarse resolution land cover maps for Northern Eurasia, Remote Sens. Environ., 2011, vol. 115, pp. 3539–3553.

    Article  Google Scholar 

  21. Pisman, T.I., Shevyrnogov, A.P., Larko, A.A., Botvich, I.Y., Emelyanov, D.V., Shpedt, A.A., and Trubnikov, Y.N., The information content of spectral vegetation indices in the interpretation of satellite images of cultivated fields, Biophysics, 2019, vol. 64, no. 4, pp. 588–592.

    Article  Google Scholar 

  22. Planet Team, Planet Application Program Interface: In Space for Life on Earth; Planet Company: San Francisco, Calif., 2018. https://api.planet.com. Accessed January 10, 2019.

  23. Qi, I., Chehbouni, A., Huete, A.R., Kerr, Y.H., and Sorooshian, S., A modified soil adjusted vegetation index, Remote Sens. Environ., 1994, pp. 119–126.

  24. Shevyrnogov, A.P., Pisman, T.I., Kononova, N.A., Botvich, I.Yu., Larko, A.A., and Vysotskaya, G.S., Seasonal dynamics of vegetation on fallow lands in Krasnoyarsk forest steppe according to terrain and satellite data, Izv., Atmos. Ocean. Phys., 2019, vol. 66, no. 9, 1353–1361.

    Article  Google Scholar 

  25. Shukilovich, A.Yu., Fedotova, E.V., and Maglinets, Yu.A., The use of the MODIS sensor for operational monitoring of agricultural lands, Zh. Sib. Fed. Univ. Tekh. Tekhnol., 2016, vol. 9, no. 7, pp. 1035–1044. https://doi.org/10.17516/1999-494X-2016-9-7-1035-1044

    Article  Google Scholar 

  26. Sid’ko, A.F., Botvich, I.Yu., Pisman, T.I., and Shevyrnogov, A.P., Angular distribution of reflective characteristics of agrocenoses according to ground-based remote measurements, Zh. Sib. Fed. Univ. Tekh. Tekhnol., 2014, no. 6, pp. 665–673.

  27. Sims, D.A. and Gamon, J.A., Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages, Remote Sens. Environ., 2002, pp. 337–354. https://doi.org/10.1016/S0034-4257(02)00010-X

  28. Solpieva, Zh.A. and Urmambetova, T.K., Assessment of the state of spruce forests according to Landsat-8 satellite data on the example of the Chon-Kemin national park, Vestn. Kyrgyz. Gos. Univ. Stroit. Transp. Arkhit. im. N. Isanova, 2018, no. 1, pp. 36–40.

  29. Thorp, K. and Tian, L.F., A review on remote sensing of weeds in agriculture, Precis. Agric., 2004, vol. 5, no. 5, pp. 477–508. https://doi.org/10.1007/s11119-004-5321-1

    Article  Google Scholar 

  30. Tovstik E.V., Adamovich T.A., and Ashikhmina, T.Ya., Identification of sites of mass growth of Heracleum sosnowskyi using spectral indices according to Sentinel-2 data, Teor. Prikl. Ekol., 2019, no. 3, pp. 34–40.

  31. Voronina, P.V. and Mamash, E.A., Classification of thematic tasks of agricultural monitoring using MODIS remote sensing data, Vychisl. Tekhnol., 2014, vol. 19, no. 3, pp. 76–102.

    Google Scholar 

  32. Vrindts, E.J., De Baerdemaeker, J., and Ramon H., Weed detection using canopy reflection, Precis. Agric., 2002, vol. 3, no. 1, pp. 63–80. https://doi.org/10.1023/A:1013326304427

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kononova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Bogacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisman, T.I., Erunova, M.G., Botvich, I.Y. et al. Information Content of Spectral Vegetation Indices for Assessing the Weed Infestation of Crops Using Ground-Based and Satellite Data. Izv. Atmos. Ocean. Phys. 57, 1188–1197 (2021). https://doi.org/10.1134/S0001433821090577

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821090577

Keywords:

Navigation