Skip to main content
Log in

Parametric Models of Microwave Radiation of Land Covers in Aircraft Navigation

  • PHYSICAL BASES AND METHODS OF STUDYING THE EARTH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

To solve the tasks of the correlation–extreme navigation using microwave radiation, we suggest models of land-cover radiation (parametric models of radiation) in which model simulations involve a limited number of describable and a priori available factors (surface water bodies, open soils, paved surfaces, etc.) and are combined with statistical parameters of the radiation characteristics of land cover determined from experiments taking into account their state. The influence of the atmosphere is taken into account using the concept of the effective temperature of the atmospheric radiation by introducing an additive to the intrinsic radiation of the land covers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Antyufeev, V.I., Bykov, V.N., Grichanyuk, A.M., Ivanchenko, D.D., Kolchigin, N.N., Krayushkin, V.A., and Sotnikov, A.M., Matrichnye radiometricheskie korrelyatsionno-ekstremal’nye sistemy navigatsii letatel’nykh apparatov (Matrix Radiometric Correlation–Extreme Aircraft Navigation Systems), Kharkov: Khar’kovskii nats. univ. im. V. N. Karamzina, 2014.

  2. Bogorodskii, V.V., Kanareikin, D.B., and Kozlov, A.I., Polyarizatsiya rasseyannogo i sobstvennogo radioizlucheniya zemnykh pokrovov (Polarization of Scattered and Intrinsic Radio Emission of the Earth’s surface), Leningrad: Gidrometeoizdat, 1981.

  3. Bondur, V.G., Methods for modeling radiation fields at the input of aerospace remote sensing systems, Issled. Zemli Kosmosa, 2000a, no. 5, pp. 16–27.

  4. Bondur, V.G., Modeling of two-dimensional random brightness fields at the input of aerospace instrumentation by the phase spectrum method, Issled. Zemli Kosmosa, 2000b, no. 5, pp. 28–44.

  5. Bondur, V.G., Aerospace methods and technologies for monitoring oil and gas areas and facilities, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1007–1018.

    Article  Google Scholar 

  6. Bondur, V.G., Modern approaches to processing large hyperspectral and multispectral aerospace data flows, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, 840–852.https://doi.org/10.1134/S0001433814090060

    Article  Google Scholar 

  7. Bondur, V.G. and Chimitdorzhiev, T.N., Texture analysis of radar images of vegetation, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2008a, no. 5, pp. 9–14.

  8. Bondur, V.G. and Chimitdorzhiev, T.N., Remote sensing of vegetation by optical microwave methods, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2008b, no. 6, pp. 64–73.

  9. Bondur, V.G. and Savin, A.I., Principles of signal simulation at the input of remote sensing instrumentation of aerospace systems for environmental monitoring, Issled. Zemli Kosmosa, 1995, no. 4, pp. 24–34.

  10. Bondur, V.G. and Starchenkov, S.A., Methods and programs for aerospace image processing and classification, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2001, no. 3, pp. 118–143.

  11. Bondur, V.G., Arzhenenko, N.I., Linnik, V.N., and Titova, I.L., Simulation of multispectral satellite images of dynamic brightness fields, Issled. Zemli Kosmosa, 2003, no. 2, pp. 3–17.

  12. Bondur, V.G., Chimitdorzhiev, T.N., Dmitriev, A.V., and Dagurov, P.N., Spatial anisotropy assessment of the forest vegetation heterogeneity at different azimuth angles of radar polarimetric sensing, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 9, pp. 926–934.https://doi.org/10.1134/S0001433819090093

    Article  Google Scholar 

  13. Logvin, A.I. and Troitsky, V.I., Synthesis of radar images from topographic maps and aerospace imagery, in Sovershenstvovanie radiolokatsionnykh sistem grazhdanskoi aviatsii i protsessov ikh tekhnicheskoi ekspluatatsii (Improvement of Civil Aviation Radar Systems and Their Operation Processes), Moscow: MIIGA, 1995, pp. 36–40.

  14. Shcherbinin, V.V., Postroenie invariantnykh korrelyatsionno-ekstremal’nykh sistem navigatsii i navedeniya letatel’nykh apparatov (Construction of Invariant Correlation-Extreme Aircraft Navigation and Guidance Systems, Moscow: MGTU im. N. E. Baumana, 2011.

  15. Starykh, A.V., Kozlov, A.I., Zhilinskaya, G.A., and Shatrakov, A.Y., Experimental illustration of the potential of microwave radiometry for aircraft navigation on ground-based targets, Nauchn. Vestn. Mosk. Gos. Tekh. Univ. Grazhdanskoi Aviats., 2012, no. 176, pp. 74–77.

  16. Troitsky, V.I., Flight experimental studies of radiometric sensors of correlation-extreme aircraft navigation systems, in Aviatsionnaya radioelektronika (Aviation Radio Electronics), Moscow, 1997, pp. 48–53.

    Google Scholar 

  17. Troitsky, V.I., Information content of the reference radio thermal fields used in correlation-extreme navigation systems, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2013a, no. 3, pp. 61–64.

  18. Troitsky, V.I., Assessment of temporal navigation stability of the radiothermal fields used in correlation-extreme navigation systems, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2013b, no. 2, pp. 72–75.

  19. Troitsky, V.I., Vector representation of radiothermal fields in the problem of correlation-extreme navigation of aircraft by intrinsic radiation of the Earth’s surface, Nauchn. Vestn. Mosk. Gos. Tekh. Univ. Grazhdanskoi Aviats., 2014a, no. 210, pp. 37–39.

  20. Troitsky, V.I., Information content of vector radiothermal fields in the problem of correlation-extreme navigation of aircraft, Nauchn. Vestn. Mosk. Gos. Tekh. Univ. Grazhdanskoi Aviats., 2014b, no. 210, pp. 33–36.

  21. Troitsky, V.I., Analysis of the influence of main parameters and operating conditions of correlation-extreme aircraft navigation systems by microwave emission of the Earth’s surface on the efficiency of their use, Nauchn. Vestn. Mosk. Gos. Tekh. Univ. Grazhdanskoi Aviats., 2018a, vol. 21, no. 2, pp. 171–180.

    Google Scholar 

  22. Troitsky, V.I., Influence of terrestrial and atmospheric characteristics on the accuracy parameters of radiothermal correlation-extreme aircraft navigation systems with the help of mathematical modeling, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2018b, vol. 62, no. 4, pp. 442–452.

    Google Scholar 

  23. Vystavkin, A.N., Kutuza, B.G., Obukhov, Yu.V., Smirnov, M.T., and Terent’ev, E.V., Synthesis of images of geophysical fields by trace microwave radiometric satellite images, Issled. Zemli Kosmosa, 1989, no. 4, pp. 91–98.

Download references

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Troitsky.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, A.I., Savinykh, V.P. & Troitsky, V.I. Parametric Models of Microwave Radiation of Land Covers in Aircraft Navigation. Izv. Atmos. Ocean. Phys. 57, 1146–1150 (2021). https://doi.org/10.1134/S0001433821090516

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821090516

Keywords:

Navigation