Skip to main content
Log in

Open-Source Software Implementation and Validation of the Split-Window Method for Automated Land Surface Temperature Retrieval from Landsat 8 Data

  • METHODS AND PROCESSING TOOLS AND INTERPRETATION OF SPACE INFORMATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An open software implementation of the algorithm for retrieving the land surface temperature (LST) from Landsat 8 remote sensing satellite data is presented using the split-window algorithm, supplemented by a covariance-variational technique to modeling the water-vapor content in the atmosphere. The implementation also uses the Simplified and Robust Surface Reflectance Estimation Method (SREM), a physical-based atmospheric correction method, and the FMASK cloud and cloud-shadow detection algorithm. All components of the complex algorithm are fully automated and do not require additional information, including external data on the state of the atmosphere. The implementation of the algorithm has been validated at various settings on the basis of ten ground stations in the United States that publish data on observations of the LST with a high time resolution; the average absolute error according to its results was 1.1°C. The software component is developed in Python and is available in the public repository https://github.com/eduard-kazakov/Landsat8_LST_PSWA; the source code is distributed under an open license.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aleskerova, A.A., Kubryakov, A.A., and Stanichny, S.V., A two-channel method for retrieval of the Black Sea surface temperature from Landsat-8 measurements, Izv., Atmos. Ocean. Phys., 2016, vol. 59, no. 9, pp. 1155–1161.

    Article  Google Scholar 

  2. Anderson, M.C., Allen, R.G., Morse, A., and Kustas, W.P., Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources, Remote Sens. Environ., 2012, vol. 122, pp. 50–65.

    Article  Google Scholar 

  3. Baldina, E.A. and Grishenko, M.Y., Study of urban heat island using multiseasonal LANDSAT 7/ ETM+ thermal imagery: Case study of Moscow, Geoinformatica, 2011, no. 3, pp. 61–69.

  4. Bilal, M., Nazeer, M., Nichol, J.E., Bleiweiss, M.P., Qiu, Z., Jäkel, E., Campbell, J.R., Atique, L., Huang, X., and Lolli, S., A simplified and robust surface reflectance estimation method (SREM) for use over diverse land surfaces using multi-sensor data, Remote Sens., 2019, vol. 11, no. 11, id 1344.

  5. Carlson, T.N. and Ripley, D.A., On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sens. Environ., 1997, vol. 62, pp. 241–252.

    Article  Google Scholar 

  6. Cristóbal, J., Jiménez-Muñoz, J.C., Prakash, A., Mattar, C., Skoković, D., and Sobrino, J.A., An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band, Remote Sens., 2018, vol. 10, no. 3, id 431.

  7. Du, C., Ren, H., Qin, Q., Meng, J., and Zhao, S., A practical split-window algorithm for estimating land surface temperature from Landsat 8 data, Remote Sens., 2015, vol. 7, no. 1, pp. 647–665.

    Article  Google Scholar 

  8. García-Santos, V., Cuxart, J., Martínez-Villagrasa, D., Jiménez, M.A., and Simó, G., Comparison of three methods for estimating land surface temperature from Landsat 8–TIRS sensor data, Remote Sens., 2018, vol. 10, no. 9, id 1450.

  9. Gornyi, V.I., Lyalko, V.I., Kritsuk, S.G., Latypov, I.Sh., Tronin, A.A., Filippovich, V.E., Stankevich, S.A., Brovkina, O.V., Kiselev, A.V., Davidan, T.A., Lubskii, N.S., and Krylova, A.B., Forecast of the thermal response of the St. Petersburg and Kiev urban environments to climate change (according to EOS and Landsat satellite imagery), Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016, vol. 13, no. 2, pp. 176–191.

    Article  Google Scholar 

  10. Kazakov, E.E. and Borisova, Y.I., Evaluation of the SREM atmospheric correction algorithm for time series analysis with Landsat data and its open-source software implementation, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2020, vol. 17, no. 2, pp. 30–39.

    Article  Google Scholar 

  11. Keeratikasikorn, C. and Bonafoni, S., Urban heat island analysis over the land use zoning plan of Bangkok by means of Landsat-8 imagery, Remote Sens., 2018, vol. 10, no. 3, id 440.

  12. Kondratyev, K.Ya. and Krapivin, V.F., Earth’s radiation budget as an indicator of global ecological equilibrium, Issled. Zemli Kosmosa, 2006, no. 1, pp. 3–9.

  13. Kritsuk, S.G., Gornyi, V.I., and Latypov, I.S., Improvement of the spatial resolution of satellite mapping of land surface thermal properties, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016, vol. 13, no. 5, pp. 277–290.

    Article  Google Scholar 

  14. Li, Z.L., Tang, B.H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F., and Sobrino, J.A., Satellite-derived land surface temperature: Current status and perspectives, Remote Sens. Environ., 2013, vol. 131, pp. 14–37.

    Article  Google Scholar 

  15. Myneni, R.B., Hall, F.G., Sellers, P.J., and Marshak, A.L., The interpretation of spectral vegetation indexes, IEEE Trans. Geosci. Remote Sens., 1995, vol. 33, no. 2, pp. 481–486.

    Article  Google Scholar 

  16. Olioso, A., Mira, M., Courault, D., Marloie, O., and Guillevic, P., Impact of surface emissivity and atmospheric conditions on surface temperatures estimated from top of canopy brightness temperatures derived from Landsat 7 data, in IEEE Int. Geosci. Remote Sens. Symposium (IGARSS’13), 21–26 July 2013, Melbourne, Australia, 2013, pp. 3033–3036.

  17. Perez Hoyos, I.C., Comparison between land surface temperature retrieval using classification based emissivity and NDVI based emissivity, Int. J. Recent Dev. Eng. Technol., 2014, vol. 2, no. 2, pp. 26–30.

    Google Scholar 

  18. Ren, H., Du, C., Liu, R., Qin, Q., Yan, G., Li, Z.L., and Meng, J., Atmospheric water vapor retrieval from Landsat 8 thermal infrared images, J. Geophys. Res.: Atmos., 2015, vol. 120, no. 5, pp. 1723–1738.

    Article  Google Scholar 

  19. Rozenstein, O., Qin, Z., Derimian, Y., and Karnieli, A., Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm, Sensors, 2014, vol. 14, no. 4, pp. 5768–5780.

    Article  Google Scholar 

  20. Sekertekin, A. and Bonafoni, S., Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation, Remote Sens., 2020, vol. 12, id 294.

  21. Sobrino, J.A., Jiménez-Muñoz, J.C., and Paolini, L., Land surface temperature retrieval from Landsat TM 5, Remote Sens. Environ., 2004, vol. 90, pp. 434–440.

    Article  Google Scholar 

  22. Sobrino, J.A., Jiménez-Muñoz, J.C., Soria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., and Martínez, P., Land surface emissivity retrieval from different VNIR and TIR sensors, IEEE Trans. Geosci. Remote Sens., 2008, vol. 46, no. 2, pp. 316–327.

    Article  Google Scholar 

  23. Son, N.T., Chen, C.F., Chen, C.R., Chang, L.Y., and Minh, V.Q., Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data, Int. J. Appl. Earth Obs., 2012, vol. 18, pp. 417–427.

    Article  Google Scholar 

  24. Stankevich, S.A., Filippovich, V.E., Lubskii, N.S., Krylova, A.B., Kritsuk, S.G., Brovkina, O.V., Gornyi, V.I., and Tronin, A.A., Intercalibration of methods for the land surface thermodynamic temperature retrieving inside urban area by thermal infrared satellite imaging, Ukr. Zh. Distantsiinogo Zonduvannya Zemli, 2015, no. 7, pp. 12–21.

  25. Tronin, A.A., Gorny, V.I., Kritsuk, S.G., and Latypov, I.S., Spectral methods of remote sensing for mineral exploration: A review, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011, vol. 8, no. 4, pp. 23–36.

    Google Scholar 

  26. Uspenskii, A.B., Kukharskii, A.V., and Uspenskii, S.A., Validation of the results of the satellite monitoring of land surface temperature, Russ. Meteorol. Hydrol., 2015, vol. 40, no. 2, pp. 131–140.

    Article  Google Scholar 

  27. Volkova, E.V. and Uspenskii, S.A., Remote determination of underlying surface temperature, surface air temperature, and effective temperature according to satellite data for southern European Russia, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016, vol. 13, no. 5, pp. 291–303.

    Article  Google Scholar 

  28. Walawender, J.P., Hajto, M.J., and Iwaniuk, P., A new ArcGIS toolset for automated mapping of land surface temperature with the use of LANDSAT satellite data, in 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS'12), Munich: Germany, 2012, pp. 4371–4374.

  29. Wang, L., Lu, Y., and Yao, Y., Comparison of three algorithms for the retrieval of land surface temperature from Landsat 8 images, Sensors, 2019, vol. 19, no. 22, id 5049.

  30. Yu, X., Guo, X., and Wu, Z., Land surface temperature retrieval from Landsat 8 TIRS: Comparison between radiative transfer equation-based method, split window algorithm and single channel method, Remote Sens., 2014, vol. 6, pp. 9829–9852.

    Article  Google Scholar 

  31. Zhu, Z., Wang, S., and Woodcock, C.E., Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images, Remote Sens. Environ., 2015, vol. 159, pp. 269–277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Kazakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, E.E., Borisova, Y.I. Open-Source Software Implementation and Validation of the Split-Window Method for Automated Land Surface Temperature Retrieval from Landsat 8 Data. Izv. Atmos. Ocean. Phys. 57, 1171–1178 (2021). https://doi.org/10.1134/S0001433821090504

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821090504

Keywords:

Navigation