Skip to main content
Log in

Assessment of Suspended Sediment Budget of the Lena River Delta Based on the Remote Sensing Dataset

  • USE OF SPACE INFORMATION ABOUT THE EARTH SATELLITE STUDIES OF LAND WATERS
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This study evaluates long-term and seasonal changes of sediment budget in Lena delta based on remote sensing dataset. Since 2000 Landsat images have been applying during ice-free period, from June to September. The sediment concentration at the delta topset was compared with sediment concentrations data at the outlets of: the Main, the Olenekskaya, the Tumatskyaya, the Trofimovskaya and the Bykovskaya channels to calculate suspended sediment budget in delta. The sediment concentration was calculated based on the archive Landsat images (more than 30 images). We have estimated influence of air temperature on thermal coastal erosion and the accumulation of sediments in the river Lena’s delta. The increase of the daily average air temperature from 5°С to 14°С plays critical role in the degradation of permafrost and the activation of the processes of thermal erosion and thermal denudation of the right channels coasts and this fact means that these results can help to estimate special aspects of biochemical budget of the delta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Albanakis, K.S., Testing of a model for the simulation of the volume reflectance of water due to suspended sediment under controlled conditions, for various sediment types, Int. J. Remote Sens., 1990, vol. 11, no. 9, pp. 1533–1547. https://doi.org/10.1080/01431169008955112

    Article  Google Scholar 

  2. Andreev, A., Tarasov, P., Schwamborn, G., Ilyashuk, B., Ilyashuk, E., Bobrov, A., and Hubberten, H.-W., Holocene paleoenvironmental records from Nikolay Lake, Lena River Delta, Arctic Russia, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2004, vol. 209, nos. 1–4, pp. 197–217. https://doi.org/10.1016/j.palaeo.2004.02.010

    Article  Google Scholar 

  3. Bhargava, D.S. and Mariam, D.W., Light penetration depth, turbidity and reflectance related relationship and models, ISPRS J. Photogram. Remote Sens., 1991, vol. 46, no. 4, pp. 217–230. https://doi.org/10.1016/0924-2716(91)90055-z

    Article  Google Scholar 

  4. Bol’shiyanov, D.Yu., Makarov, A.S., Schneider, W., and Schtoff, G., Proiskhozhdenie i razvitie del’ty reki Leny (Origin and Development of the Lena River Delta), St. Petersburg: AANII, 2013.

  5. Chalov, S.R., Bazilova, V.O., and Tarasov, M.K., Suspended sediment balance in Selenga delta at the late XX–early XXI century: Simulation by LANDSAT satellite images, Water Resour., 2017a, vol. 44, no. 3, pp. 463–470. https://doi.org/10.1134/S0097807817030071

    Article  Google Scholar 

  6. Chalov, S.R., Bazilova, V.O., and Tarasov, M.K., Modelling suspended sediment distribution in the Selenga River delta using Landsat data, Proc. Int. Assoc. Hydrol. Sci., 2017b, vol. 375, pp. 19–22. https://doi.org/10.5194/piahs-375-19-2017

    Article  Google Scholar 

  7. Chalov, S., Golosov, V., Tsyplenkov, A., Theuring, P., Zakerinejad, R., Märker, M., and Samokhin, M.A., Toolbox for sediment budget research in small catchments, Geogr., Environ., Sustainability, 2017c, vol. 10, no. 4, pp. 43–68. https://doi.org/10.24057/2071-9388-2017-10-4-43-68

    Article  Google Scholar 

  8. Chalov, S.R., Potemkina, T.G., Pashkina, M.P., and Kasimov, N.S., Evolution of suspended sediment budget in the deltas of Lake Baikal tributaries, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 10, pp. 667–673.

    Article  Google Scholar 

  9. Chalov, S.R., Moreido, V.M., Sharapova, E.O., Efimova, L.E., Efimov, V.A., Lychagin, M.Y., and Kasimov, N.S., Hydrodynamic controls of particulate metals partitioning along the lower Selenga River—main tributary of the Lake Baikal, Water, 2020, vol. 12, no. 1345, pp. 1–17. https://doi.org/10.3390/w12051345

    Article  Google Scholar 

  10. Charkin, A.N., Fedorova, I.V., and Semiletov, I.P., Spatial variability scales of the distribution of suspended sediment in the Lena River–Laptev Sea system, in Geologiya, geografiya i ekologiya okeana (Geology, Geography, and Ecology of the Ocean), Rostov-on-Don: YuNTs, 2009, pp. 351–354.

  11. Digital source http://aisori-m.meteo.ru/waisori/

  12. Digital source https://arcticgreatrivers.org/

  13. Debol’skii, V.K., Gritsuk, I.I., Ionov, D.N., and Maslikova, O.Ya., Erosion of the frozen riversides of northern rivers depending on the coastal slope direction, Vestn. Mosk. Gos. Str. Univ., 2018, vol. 13, no. 9, pp. 1112–1124.

    Google Scholar 

  14. Doxaran, D., Froidefond, J.-M., and Castaing, P., A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters, Int. J. Remote Sens., 2002, vol. 23, no. 23, pp. 5079–5085. https://doi.org/10.1080/0143116021000009912

    Article  Google Scholar 

  15. Fedorova, I.V., Bol’shiyanov, D.Yu., Makarov, A.S., Tret’yakov, M.V., and Chetverova, A.A., Modern hydrological state of the Lena River delta, in Sistema morya Laptevykh i prilegayushchikh morei Arktiki: sovremennoe sostoyanie i istoriya razvitiya (The System of the Laptev Sea and the adjacent Arctic Seas: Modern and Past Environments), Moscow: Izd. Mosk. univ., 2009, pp. 278–291.

  16. Forget, P., Ouillon, S., Lahet, F., and Broche, P., Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters, Remote Sens. Environ., 1999, vol. 68, no. 3, pp. 264–272. https://doi.org/10.1016/s0034-4257(98)00117-5

    Article  Google Scholar 

  17. Gavrilov, A.V. and Pizhankova, E.I., Dynamics of permafrost in the coastal zone of Eastern-Asian sector of the Arctic, Geogr., Environ., Sustainability, 2018, vol. 11, no. 1, pp. 20–37. https://doi.org/10.24057/2071-9388-2018-11-1-20-37

    Article  Google Scholar 

  18. Grigor’ev, M.N., Kriomorfogenez ust’evoi oblasti r. Leny (Cryomorphogenesis of the Lena River Delta, Yakutsk: Inst. merzlotovedeniya SO RAN, 1993.

  19. Grigor’ev, M.N., Imaev, V.S., Imaeva, L.P., Koz’min, B.M., Kunitskii, V.V., Larionov, A.G., Mikulenko, K.I., Skryabin, R.M., and Timirshin, K.V., Geologiya, seismichnost' i merzlotnye protsessy arkticheskikh raionov Zapadnoi Yakutii (Geology, Seismicity, and Permafrost Processes of the Arctic regions of Western Yakutia), Yakutsk: YaNTs SO RAN, 1996.

  20. Kirk, J.T.O., The upwelling light stream in natural waters, Limnol. Oceanogr., 1989, vol. 34, no. 8, pp. 1410–1425.

    Article  Google Scholar 

  21. Korotaev, V.N., Mikhailov, V.N., Babich, D.B., Bogomolov, A.L., and Zaets, G.M., Hydrological and morphological processes in the Lena River delta, in Zemel’nye i vodnye resursy: protivoerozionnaya zashchita i regulirovanie rusel (Land and Water Resources: Anti-Erosion Protection and Regulation of Riverbeds), Moscow: Izd. Mosk. Univ., 1990, pp. 120–144.

  22. Kotlyakov, V.M., Osokin, N.I., and Sosnovskii, A.V., Dynamics of seasonally thawed layer on Svalbard and the Antarctic Peninsula in the XXI century according to modeling data, Led Sneg, 2020, vol. 60, no. 2, pp. 201–212. https://doi.org/10.31857/S2076673420020034

    Article  Google Scholar 

  23. Kravtsova, V.I. and Antonova, S.Yu., Polyzonal surveying for the investigation and mapping of shallows: Case study of the northeastern Caspian Sea, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 1974, vol. 2, pp. 78–88.

    Article  Google Scholar 

  24. Kravtsova, V.I. and Inyushin, A.N., Studying the present-day dynamics of Lena Delta by space images, Water Resour., 2019, vol. 46, no. 6, pp. 817–824. https://doi.org/10.1134/S0097807819060095

    Article  Google Scholar 

  25. Labutina, I.A., Saf’yanov, G.A., and Sharlai, T.G., Studying suspended sediment transport in seas by polyzonal images, Dokl. Akad. Nauk, 1976, vol. 230, no. 2, pp. 536–538.

    Google Scholar 

  26. Lisitsyn, A.P., Marginal filter of oceans, Okeanologiya, 1994, vol. 34, no. 5, pp. 735–747.

    Google Scholar 

  27. Long, C.M. and Pavelsky, T.M., Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment, Remote Sens. Environ., 2013, vol. 129, pp. 197–209. https://doi.org/10.1016/j.rse.2012.10.019

    Article  Google Scholar 

  28. Lopatin, G.V. and Fedorov, M.K., Fiziko-geograficheskii ocherk del’ty r. Leny (Physical and Geographical Study of the Lena River Delta), Leningrad: ANII, 1947–1948.

  29. Miller, R.L. and Cruise, J.F., Effects of suspended sediments on coral growth: Evidence from remote sensing and hydrologic modeling, Remote Sens. Environ., 1995, vol. 53, no. 3, pp. 177–187. https://doi.org/10.1016/0034-4257(95)00081-b

    Article  Google Scholar 

  30. Milliman, J.D. and Farnsworth, K.L., River Discharge to the Coastal Ocean, A Global Synthesis, Cambridge: Cambridge Univ. Press, 2013, pp. 143–160.

    Google Scholar 

  31. Novo, E.M.M., Hansom, J.D., and Curran, P.J., The effect of sediment type on the relationship between reflectance and suspended sediment concentration, Int. J. Remote Sens., 1989, vol. 10, no. 7, pp. 1283–1289. https://doi.org/10.1080/01431168908903967

    Article  Google Scholar 

  32. Park, E. and Latrubesse, E.M., Modeling suspended sediment distribution patterns of the Amazon River using MODIS data, Remote Sens. Environ., 2014, vol. 147, pp. 232–242. https://doi.org/10.1016/j.rse.2014.03.013

    Article  Google Scholar 

  33. Pavelsky, T.M. and Smith, L.C., Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada, Water Resour. Res., 2009, vol. 45, no. 11, pp. 110–126. https://doi.org/10.1029/2008wr007424

    Article  Google Scholar 

  34. Rachold, V., Grigoriev, M.N., Are, F.E., Solomon, S., Reimnitz, E., Kassens, H., and Antonow, M., Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas, Int. J. Earth Sci., 2000, vol. 89, no. 3, pp. 450–460. https://doi.org/10.1007/s005310000113

    Article  Google Scholar 

  35. Stettner, S., Beamish, A., Bartsch, A., Heim, B., Grosse, G., Roth, A., and Lantuit, H., Monitoring inter- and intra-seasonal dynamics of rapidly degrading ice-rich permafrost riverbanks in the Lena Delta with TerraSAR-X time series, Remote Sens., 2017, vol. 10, no. 1, p. 51. https://doi.org/10.3390/rs10010051

  36. Sukhodrovskii, V.L., Ekzogennoe rel’efoobrazovanie v kriolitozone (Exogenous Relief Formation in the Cryolithozone) Moscow: Nauka, 1979.

  37. Tarasov, M.K. and Tutubalina, O.V., Estimating the water turbidity in the Selenga River and adjacent waters of Lake Baikal using remote sensing data, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 1353–1362. https://doi.org/10.1134/S0001433818090372

    Article  Google Scholar 

  38. Victorov, A.S. and Trapeznikova, O.N., Stochastic models of dynamic balance state for the morphological patterns of cryolithozone landscapes, Geogr., Environ., Sustainability, 2019, vol. 12, no. 3, pp. 6–15. https://doi.org/10.24057/2071-9388-2018-68

    Article  Google Scholar 

  39. Wang, J., Lu, X., and Zhou, Y., Retrieval of suspended sediment concentrations in the turbid water of the Upper Yangtze River using Landsat ETM+, Chin. Sci. Bull., 2007, vol. 52, no. 2, pp. 273–280. https://doi.org/10.1007/s11434-007-7012-6

    Article  Google Scholar 

  40. Wang, J., Lu, X.X., Liew, S.C., and Zhou, Y., Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: An example from the Yangtze River, China, Earth Surf. Processes Landforms, 2009, vol. 34, no. 8, pp. 1082–1092. https://doi.org/10.1002/esp.1795

    Article  Google Scholar 

Download references

Funding

The analysis of satellite images was supported by the Russian Scientific Foundation, project no. 21-17-00181, and the analysis of the morphodynamics of the riverbed and of the erosion of river banks was supported by the Russian Scientific Foundation, project no. 18–17-00086. The terrain works were supported by the Russian Foundation for Basic Research, project no. 18-05-60219 Arctic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Chalov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalov, S.R., Prokopeva, K.N. Assessment of Suspended Sediment Budget of the Lena River Delta Based on the Remote Sensing Dataset. Izv. Atmos. Ocean. Phys. 57, 1051–1060 (2021). https://doi.org/10.1134/S0001433821090450

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821090450

Keywords:

Navigation