Skip to main content
Log in

Cloud Detection from the Himawari-8 Satellite Data Using a Convolutional Neural Network

  • METHODS AND PROCESSING TOOLS AND INTERPRETATION OF SPACE INFORMATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The methodology of cloud detection from the data of the Himawari-8 geostationary satellite using a convolutional neural network is considered. The model of the cloud classifier has been tested in various scenarios, including winter and summer at night and daytime, as well as at day and night change. According to the test results, it has been found that, even in complex scenarios, the classifier has minimal errors when compared to the cloud-detection algorithms used in global operational practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Afzali Gorooh, V., Kalia, S., Nguyen, P., Hsu Kuo-Lin, Sorooshian, S., Ganguly, S., and Nemani, R., Deep neural network cloud-type classification (DeepCTC) model and its application in evaluating PERSIANN-CCS, Remote Sens., 2020, vol. 12, no. 2, id 316. https://doi.org/10.3390/rs12020316

  2. Amato, U., Antoniadis, A., Cuomo, V., Cutillo, L., Franzese, M., Murino, L., and Serio, C., Statistical cloud detection from SEVIRI multispectral images, Remote Sens. Environ., 2008, vol. 112, no. 3, pp. 750–766. https://doi.org/10.1016/j.rse.2007.06.004

    Article  Google Scholar 

  3. Andreev, A.I., Shamilova, Y.A., and Kholodov, E.I., Using convolutional neural networks for cloud detection from Meteor-M no. 2 MSU-MR data, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 7, pp. 459–466.

    Article  Google Scholar 

  4. Chen, N., Li, W., Gatebe, C., Tanikawa, T., Hori, M., Shimada, R., Aoki, T., and Stamnes, K., New neural network cloud mask algorithm based on radiative transfer simulations, Remote Sens. Environ., 2018, vol. 219, pp. 62–71. https://doi.org/10.1016/j.rse.2018.09.029

    Article  Google Scholar 

  5. Da, C., Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite, Remote Sens. Lett., 2015, vol. 6, no. 8, pp. 637–646. https://doi.org/10.1080/2150704X.2015.1066522

    Article  Google Scholar 

  6. Drönner, J., Korfhage, N., Egli, S., Mühling, M., Thies, B., Bendix, J., Freisleben, B., and Seeger, B., Fast cloud segmentation using convolutional neural networks, Remote Sens., 2018, vol. 10, no. 11, id 1782. https://doi.org/10.3390/rs10111782

  7. Francis, A., Sidiropoulos, P., and Muller, J.P., CloudFCN: Accurate and robust cloud detection for satellite imagery with deep learning, Remote Sens., 2019, vol. 11, no. 19, id 2312. https://doi.org/10.3390/rs11192312

  8. Ganci, G., Vicari, A., Bonfiglio, S., and Gallo, G., A texton-based cloud detection algorithm for MSG-SEVIRI multispectral images, Geomatics, Nat. Hazards Risk, 2011, vol. 2, no. 3, pp. 279–290. https://doi.org/10.1080/19475705.2011.578263

    Article  Google Scholar 

  9. Godin, R., Joint Polar Satellite System (JPSS) VIIRS Cloud Mask (VCM) Algorithm Theoretical Basis Document (ATBD), Greenbelt, Md.: NASA Goddard Space Flight Center, 2014, JPSS Ground Project, Code 474, 474–00033.

  10. Hastie, T., Tibshirani, R., and Friedman, J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2009.

    Book  Google Scholar 

  11. Imai, T. and Yoshida, R., Algorithm theoretical basis for Himawari-8 cloud mask product, Meteorol. Satell. Cent. Tech. Note, 2016, vol. 61, pp. 1–17.

    Google Scholar 

  12. Kingma, D.P. and Ba, J., Adam: A method for stochastic optimization, 2014. https://arxiv.org/abs/1412.6980.

  13. Kramareva, L.S., Andreev, A.I., Simonenko, E.V., and Sorokin, A.A., The use of a convolutional neural network for detecting snow according to the data of the multichannel satellite device of Meteor-M No. 2 spacecraft, Procedia Comput. Sci., 2019, vol. 150, pp. 368–375. https://doi.org/10.1016/j.procs.2019.02.065

    Article  Google Scholar 

  14. LeCun, Y. and Bengio, Y., Convolutional networks for images, speech, and time series, in The Handbook of Brain Theory and Neural Networks, 1995, vol. 3361, no. 10, pp. 255–258.

  15. Mahajan, S. and Fataniya, B., Cloud detection methodologies: Variants and development—a review, Complex Intell. Syst., 2019, pp. 1–11.

    Google Scholar 

  16. Mateo-García, G., Adsuara, E.J., Pérez-Suay, A., and Gómez-Chova, L., Convolutional long short-term memory network for multitemporal cloud detection over landmarks, IEEE International Geoscience and Remote Sensing Symposium (IGARSS-2019), pp. 210–213. https://doi.org/10.1109/IGARSS.2019.8897832

  17. Sadowski, P., Notes on backpropagation, 2016. https:// www.ics.uci.edu/pjsadows/notes.pdf.

  18. Sassen, K., Wang, Z., and Liu, D., Global distribution of cirrus clouds from CloudSat/Cloud–Aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements, J. Geophys. Res.: Atmos., 2008, vol. 113, no. D8. https://doi.org/10.1029/2008JD009972

  19. Stillinger, T., Roberts, D.A., Collar, N.M., and Dozier, J., Cloud masking for Landsat 8 and MODIS Terra over snow-covered terrain: Error analysis and spectral similarity between snow and cloud, Water Resour. Res., 2019, vol. 55, no. 7, pp. 6169–6184. https://doi.org/10.1029/2019WR024932

    Article  Google Scholar 

  20. Sun, L., Wei, J., Wang, J., Mi, X., Guo, Y., Lv, Y., Yang, Y., Gan, P., Zhou, X., Jia, C., and Tian, X., A universal dynamic threshold cloud detection algorithm (UDTCDA) supported by a prior surface reflectance database, J. Geophys. Res.: Atmos., 2016, vol. 121, no. 12, pp. 7172–7196. https://doi.org/10.1002/2015JD024722

    Article  Google Scholar 

  21. Szegedy, C., Ioffe, S., and Vanhoucke, V., Inception-v4, Inception-ResNet and the impact of residual connection on learning, 2016. https://arxiv.org/abs/1602.07261v2.

  22. Wang, X., Min, M., Wang, F., Guo, J., Li, B., and Tang, S., Intercomparisons of Cloud Mask Products Among Fengyun-4A, Himawari-8, and MODIS, IEEE Trans. Geosci. Remote Sens., 2019, vol. 57, no. 11, pp. 8827–8839. https://doi.org/10.1109/TGRS.2019.2923247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Andreev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, A.I., Shamilova, Y.A. Cloud Detection from the Himawari-8 Satellite Data Using a Convolutional Neural Network. Izv. Atmos. Ocean. Phys. 57, 1162–1170 (2021). https://doi.org/10.1134/S0001433821090401

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821090401

Keywords:

Navigation