Skip to main content
Log in

Reversible Electrode Effect and Dowsing

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The volumetric charge of the surface air above the objects of study of dowsers is characterized by a reversible electrode effect—an excess of negative charge. The frame, carrying a negative charge equal in density to the earth’s charge, makes oscillatory movements in the operator’s hand; as a result, the density of the enveloping negative air charge on one side of the horizontal elbow increases. The negative charges of the horizontal bend of the frame and the negative space charge of air are inevitably repulsed. As a mechanical device, the frame is a lever where the pushing forces will be resisted by the frictional force of the vertical knee in the operator’s hand. As a result, the repulsive forces between the negative air charge and the negative charge of the horizontal knee will multiply in proportion to the ratio of the distance from the point of application of forces to the horizontal knee to the radius of the vertical knee. Field and laboratory experiments confirm this hypothesis of the atmospheric–electrical nature of the rotation of the horizontal knee of the frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Garvalik, Z.V., Garvalik, V., and de Ber, V., Scientific aspects of dowsing: Schuman resonance and global network, Radionika, 1997, no. 2, pp. 17–19.

  2. Inyutin, I.P., Geomagnetic surveying tool, in Bioaktivnye izlucheniya Zemli: Ot drevnego iskusstva poiska – k sovremennym metodam issledovaniya (Bioactive Radiative of the Earth: From Age-Old Search to Modern Research Methods), Moscow: MNTORES im. A.S. Popova, 2006, pp. 67–75.

  3. Kibitkin, V.V., Measurement of source field boundaries using the biolocation method, in Biofizicheskii metod: Sovremennye issledovaniya (The Biophysical Method: Modern Research), Moscow: MNTORES im. A.S. Popova, 2008, pp. 32–39.

  4. Matveev, V.S., Temporal change in gravity and “biological” fields at segments of evolving landslide processes, in Bioaktivnye izlucheniya Zemli: Ot drevnego iskusstva poiska – k sovremennym metodam issledovaniya (Bioactive Radiative of the Earth: From Age-Old Search to Modern Research Methods), Moscow: MNTORES im. A.S. Popova, 2006, pp. 15–18.

  5. Nepomnyashchikh, I.A., Problems of techniques for instrument-based recording of the fields (geofields) of minerals, ores, and their deposits, in Bioaktivnye izlucheniya Zemli: Ot drevnego iskusstva poiska – k sovremennym metodam issledovaniya (Bioactive Radiative of the Earth: From Age-Old Search to Modern Research Methods), Moscow: MNTORES im. A.S. Popova, 2006, pp. 38–40

  6. Ponosov, V.A., Biolokatsiya. Lozokhodstvo: Posobie po ispol’zovaniyu biolokatsionnogo effekta dlya poiskov vody, poleznykh iskopaemykh, geopatogennykh zon, razlichnykh ob’’ektov zhivoi i nezhivoi prirody (Biolocation. Dowsing: Manual on the Use of the Biolocation Effect for the Exploration of Water, Mineral Resources, Geopathogenic Zones, and Different Objects of Wildlife and Inorganic Nature), Perm’: Poligrafist, 1993.

  7. Redin, A.A., Mathematical modeling of electrodynamic processes in the surface layer under aerosol pollution of the atmosphere, Extended abstract of Cand. Sci. (Phys.–Math.) Dissertation, Taganrog, 2011.

  8. Redin, A.A., Kupovykh, G.V., and Boldyrev, A.S., Electrodynamic model of the atmospheric convective-turbulent surface layer, Radiophys. Quantum Electron., 2014, vol. 56, nos. 11–12, pp. 739–746.

    Article  Google Scholar 

  9. Shuleikin, V.N., Reverse electrode effect: Calculation and experiment, Nauka Tekhnol. Razrab., 2013a, vol. 92, no. 2, pp. 17–27.

    Google Scholar 

  10. Shuleikin, V.N., Radon transport to the near-surface soil and air layers, Izv., Atmos. Ocean. Phys., 2013b, vol. 49, no. 8, pp. 853–859.

    Article  Google Scholar 

  11. Shuleikin, V.N., Water vapor, atmospheric electricity, and radon transfer to the near-surface soil layers and the atmosphere, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 7, pp. 688–692.

    Article  Google Scholar 

  12. Shuleikin, V.N., Aquifer dynamics and atmospheric electricity, Izv., Atmos. Ocean. Phys., 2018a, vol. 16, no. 7, pp. 646–653. https://doi.org/10.1134/S0001433818070125

    Article  Google Scholar 

  13. Shuleikin, V.N., Quantitative study of relationships of hydrogen, methane, radon, and the atmospheric electric field, Izv., Atmos. Ocean. Phys., 2018b, vol. 54, no. 8, pp. 794–804. https://doi.org/10.1134/S0001433818080121

    Article  Google Scholar 

  14. Shuleikin, V.N., Earth and Atmospheric Electricity, New York: Nova Sci. Publ., 2018c.

    Google Scholar 

  15. Shuleikin, V.N., Atmospheric electricity and dowsing, Aktual. Probl. Nefti Gaza, 2020, no. 1, pp. 13. https://doi.org/10.29222/ipng.2078-5712.2020-28.art4

  16. Shuleikin, V.N. and Kupovykh, G.V., Assessing the performance of the atmospheric electricity mechanism of dowsing, Aktual. Probl. Nefti Gaza, 2020, no. 2, pp. 51–63. https://doi.org/10.29222/ipng.2078-5712.2020-29.art4

  17. Shuleikin, V.N., Shchukin, G.G., and Kupovykh, G.V., Razvitie metodov i sredstv prikladnoi geofiziki: Atmosferno-elektricheskii monitoring geologicheskikh neodnorodnostei i zon geodinamicheskikh protsessov (Development of Methods and Tools of Applied Geophysics: Atmospheric Electricity Monitoring of Geological Inhomogeneities and Zones of Geodynamical Processes), St. Petersburg: TsOP RGGMU, 2015.

  18. Sochevanov, N.N., Stetsenko, B.C., and Chekunov, A.Ya., Ispol’zovanie biolokatsionnogo metoda pri poiske mestorozhdenii i geologicheskom kartirovanii (The Biolocation Method for Search for Field Exploration and Geological Mapping), Moscow: Radio i svyaz', 1984.

  19. Tverskoi, P.N., Kurs meteorologii (A Course of Meteorology), Leningrad: Gidrometeoizdat, 1951.

  20. Valdmanis, Ya.Ya., Dolatsis, Ya.A., and Kalnin’, T.K., Lozokhodstvo – vekovaya zagadka (Dowsing: An Age-Old Mystery), Riga: Zinatne, 1979.

  21. Zhigalin, A.D. and Shuleikin, V.N., Dowsing, nanotechnologies, and prospects of applied and fundamental geophysics, Geol. Geofiz. Yuga Ross., 2016, no. 2, pp. 132–139.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Shuleikin.

Ethics declarations

The author declares he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuleikin, V.N. Reversible Electrode Effect and Dowsing. Izv. Atmos. Ocean. Phys. 57, 687–694 (2021). https://doi.org/10.1134/S0001433821070112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821070112

Keywords:

Navigation