Skip to main content
Log in

Surface Wave Tomography of Southeast Asia

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A study of the deep structure of the Earth’s crust and the upper mantle beneath Southeast Asia is presented from surface wave tomography data. A representative sample of dispersion curves of group velocities of Rayleigh (6522 seismic paths) and Love (4489 seismic paths) waves is compiled by frequency–time analysis in the range of periods of 10–250 s. The distribution of group velocities at some periods is calculated on the basis of this sample and using a two-dimensional tomography method for a spherical surface. A total of 18 maps are obtained for each wave type and their horizontal resolution is estimated. To facilitate the interpretation of these maps, local dispersion curves of Rayleigh and Love waves obtained from tomography are inverted to SV- and SH-wave velocity sections, respectively, for three different regions: the Tibetan plateau, the Indian plate, and the South China Sea. The resulting distributions of surface wave group velocities allow us to analyze the main large-scale structural features of the crust and upper mantle beneath Southeast Asia and associate the velocity inhomogeneities with different tectonic units. Specifically, at a period of 20 s, the minima of group velocities of Rayleigh and Love waves are found to be under regions characterized by a large thickness of sedimentary deposits. The minima and maxima of group velocities at a period of 50 s are mostly related to areas with thickened and thinned crusts, respectively. With an increase in the period to 150 s, the highest group velocity values are attributed to stable tectonic structures (Indian plate, Sino–Korean and South China platforms, and Tarim basin), and their lower values are observed beneath the marginal seas in the east of the study area and the Indochina Peninsula. At longer periods, the velocity variations become less expressed, which indicates a more homogeneous structure of the subasthenospheric layers of the upper mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Behera, L. and Sain, K., Crustal velocity structure of the Indian shield from deep seismic sounding and receiver function studies, J. Geol. Soc. India, 2006, vol. 68, pp. 989–992.

    Google Scholar 

  2. Bijwaard, H., Spakman, W., and Engdahl, E.B., Closing the gap between regional and global travel time tomography, J. Geophys. Res., 1998, vol. 12, pp. 30055–30078.

    Article  Google Scholar 

  3. Ceylan, S., Ni, J., Chen, J.Y., Zhang, Q., Tilmann, F., and Sandvol, E., Fragmented Indian plate and vertically coherent deformation beneath Eastern Tibet, J. Geophys. Res., 2012, vol. 117, B11303. https://doi.org/10.1029/2012JB009210

    Article  Google Scholar 

  4. Das, R., Ashish, and Saha, G.K., Crust and shallow mantle structure of south India by inverting interpolated receiver function with surface wave dispersion, J. Asian Earth Sci., 2019, vol. 176, pp. 157–167. https://doi.org/10.1016/j.jseaes.2019.02.011

    Article  Google Scholar 

  5. Dixit, M., Singh, A.P., and Mishra, O.P., Rayleigh wave group velocity tomography of Gujarat region, Western India, and its implications to mantle dynamics, J. Seismol., 2017, vol. 21, pp. 809–823. https://doi.org/10.1007/s10950-016-9636-y

    Article  Google Scholar 

  6. Dziewonski, A.M. and Anderson, D.L., Preliminary reference Earth model, Phys. Earth Planet. Int., 1981, vol. 25, pp. 297–356.

    Article  Google Scholar 

  7. Ekström, G., A global model of love and Rayleigh surface wave dispersion and anisotropy, 25–250 s, Geophys. J. Int., 2011, vol. 187, pp. 1668–1686. https://doi.org/10.1111/j.1365-246X.2011.05225.x

    Article  Google Scholar 

  8. Feng, M. and An, M., Lithosphere structure of the Chinese mainland determined from joint inversion of regional and teleseismic Rayleigh-wave group velocities, J. Geophys. Res., 2010, vol. 115, B06317. https://doi.org/10.1029/2008JB005787

    Article  Google Scholar 

  9. Feng, M., An, M., Zhao, W., Xu, G., Mechie, J., and Zhao, Y., Lithospheric structures of northeast Tibetan plateau and their geodynamic implications, J. Geodyn., 2011, vol. 52, pp. 432–442. https://doi.org/10.1016/j.jog.2011.07.002

    Article  Google Scholar 

  10. Koulakov, I., High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of world traveltime data, J. Geophys. Res., 2011, vol. 116, B04301. https://doi.org/10.1029/2010JB007938

    Article  Google Scholar 

  11. Kozhevnikov, V.M., Seredkina, A.I., and Solovei, O.A., Dispersion of group velocities of Rayleigh waves and a three-dimensional model of the structure of Central Asian mantle, Geol. Geofiz., 2014, vol. 55, no. 10, pp. 1564–1575.

    Google Scholar 

  12. Laske, G., Masters, G., Ma, Z., and Pasyanos, M., Update on CRUST1.0: A 1-degree global model of Earth’s crust, Geophys. Res. Abstr., 2013, EGU2013-2658.

  13. Lebedev, S. and Nolet, G., Upper mantle beneath Southeast Asia from S velocity tomography, J. Geophys. Res., 2003, vol. 108, no. B1, 2048. https://doi.org/10.1029/2000JB000073

    Article  Google Scholar 

  14. Levshin, A.L., Yanovskaya, T.B., Lander, A.V., Bukchin, B.G., Barmin, M.P., Ratnikova, L.I., and Its, E.N., Poverkhnostnye seismicheskie volny v gorizontal’no-neodnorodnoi Zemle (Surface Seismic Waves on the Horizontally Inhomogeneous Earth), Moscow: Nauka, 1986.

  15. Li, S., Mooney, W.D., and Fan, J., Crustal structure of mainland China from deep seismic sounding data, Tectonophysics, 2006, vol. 420, pp. 239–252. https://doi.org/10.1016/j.tecto.2006.01.026

    Article  Google Scholar 

  16. Li, T., The principal characteristics of the lithosphere of China, Geosci. Front., 2010, vol. 1, pp. 45–56.https://doi.org/10.1016/j.gsf.2010.08.005

    Article  Google Scholar 

  17. Li, Y., Wu, Q., Pan, J., Zhang, F., and Yu, D., An upper mantle S-wave velocity model for East Asia from Rayleigh wave tomography, Earth Planet. Sci. Lett., 2013, vol. 377–378, pp. 367–377. https://doi.org/10.1016/j.epsl.2013.06.033

    Article  Google Scholar 

  18. Liu, Zh., Tian, X., Yuan, X., Liang, X., Chen, Y., Zhu, G., Zhang, H., Li, W., Tan, P., Zhuo, S., Wu, Ch., Nie, S., Wang, G., Yu, G., and Zhou, G., Complex structure of upper mantle beneath the Yadong-Gulu rift in Tibet revealed by S-to-P converted waves, Mar. Geol., 2020, vol. 531, id 115954. https://doi.org/10.1016/j.epsl.2019.115954

  19. Lü, Y., Zhang, Z., Pei, S., Sandvol, E., Xu, T., and Liang, X., 2.5-dimensional tomography of uppermost mantle beneath Sichuan–Yunnan and surrounding regions, Tectonophysics, 2014, vol. 627, pp. 193–204. https://doi.org/10.1016/j.tecto.2013.03.008

    Article  Google Scholar 

  20. Ma, Z., Masters, G., Laske, G., and Pasyanos, M., A comprehensive dispersion model of surface wave phase and group velocity for the globe, Geophys. J. Int., 2014, vol. 199, pp. 113–135. https://doi.org/10.1093/gji/ggu246

    Article  Google Scholar 

  21. Maurya, S., Montagner, J.-P., Kumar, M.R., Stutzmann, E., Kiselev, S., Burgos, G., Rao, N.P., and Srinagesh, D., Imaging the lithospheric structure beneath the Indian continent, J. Geophys. Res.: Solid Earth, 2016, vol. 121, pp. 7450–7468. https://doi.org/10.1002/2016JB012948

    Article  Google Scholar 

  22. Pandey, S., Yuan, X., Debayle, E., Priestley, K., Kind, R., Tilmann, F., and Li, X., A 3D shear-wave velocity model of the upper mantle beneath China and the surrounding areas, Tectonophysics, 2014, vol. 633, pp. 193–210. https://doi.org/10.1016/j.tecto.2014.07.011

    Article  Google Scholar 

  23. Panning, M. and Romanowicz, B., Inferences of flow at the base of the Earth’s mantle based on seismic anisotropy, Science, 2004, vol. 303, pp. 351–353.

    Article  Google Scholar 

  24. Priestley, K., Debayle, E., McKenzie, D., and Pilidou, S., Upper mantle structure of Eastern Asia from multimode surface waveform tomography, J. Geophys. Res., 2006, vol. 111, B10304. https://doi.org/10.1029/2005JB004082

    Article  Google Scholar 

  25. Ritzwoller, M.H. and Levshin, A.L., Eurasian surface wave tomography: Group velocities, J. Geophys. Res., 1998, vol. 103, pp. 4839–4878.

    Article  Google Scholar 

  26. Schaeffer, A.J. and Lebedev, S., Global shear speed structure of the upper mantle and transitional zone, J. Geophys. Int., 2013, vol. 194, pp. 417–449. https://doi.org/10.1093/gji/ggt095

    Article  Google Scholar 

  27. Sengor, A.M.C., Natal’in, B.A., and Burtman, V.S., Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia, Nature, 1993, vol. 364, pp. 299–307.

    Article  Google Scholar 

  28. Seredkina, A.I., Surface wave tomography of the Arctic from Rayleigh and Love wave group velocity dispersion data, Izv., Phys. Solid Earth, 2019a, vol. 55, no. 3, pp. 439–450. https://doi.org/10.1134/S106935131903008X

    Article  Google Scholar 

  29. Seredkina, A., S-wave velocity structure of the upper mantle beneath the Arctic region from Rayleigh wave dispersion data, Phys. Earth Planet. Int., 2019b, vol. 290, pp. 76–86. https://doi.org/10.1016/j.pepi.2019.03.007

    Article  Google Scholar 

  30. Seredkina, A.I. and Solovei, O.A., Anisotropic properties of the upper mantle in central Asia according to the group velocity dispersion curves for Rayleigh and Love waves, Geodin. Tektonofiz., 2018, vol. 9, no. 2, pp. 427–437. https://doi.org/10.5800/GT-2018-9-2-0354

    Article  Google Scholar 

  31. Seredkina, A.I., Kozhevnikov, V.M., Melnikova, V.I., and Solovey, O.A., Seismicity and S-wave velocity structure of the crust and the upper mantle in the Baikal rift and adjacent regions, Phys. Earth Planet. Int., 2016, vol. 261, pp. 152–160. https://doi.org/10.1016/j.pepi.2016.10.011

    Article  Google Scholar 

  32. Seredkina, A.I., Kozhevnikov, V.M., and Solovei, O.A., Dispersion of group velocities of Rayleigh and Love waves and anisotropic properties of the Asian mantle, Geol. Geofiz., 2018, vol. 59, no. 4, pp. 553–565. https://doi.org/10.15372/GiG20180410

    Article  Google Scholar 

  33. Shapiro, N.M. and Ritzwoller, M.H., Monte-Carlo inversion for a global shear velocity model for the crust and upper mantle, Geophys. J. Int., 2002, vol. 151, no. 1, pp. 88–105.

    Article  Google Scholar 

  34. Shen, W., Ritzwoller, M.H., Kang, D., Kim, Y.-H., Lin, F.-C., Ning, J., Wang, W., Zheng, Y., and Zhou, L., A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion, Geophys. J. Int., 2016, vol. 206, pp. 954–979. https://doi.org/10.1093/gji/ggw175

    Article  Google Scholar 

  35. Shi, Y.-T., Gao, Y., Shen, X.-Z., and Liu, K.H., Multiscale spatial distribution of crustal seismic anisotropy beneath the north-eastern margin of the Tibetan plateau and tectonic implications of the Haiyuan fault, Tectonophysics, 2020, vol. 774, id 228274. https://doi.org/10.1016/j.tecto.2019.228274.

  36. Tang, Q. and Zheng, C., Crust and upper mantle structure and its tectonic implications in the South China Sea and adjacent regions, J. Asian Earth Sci., 2013, vol. 62, pp. 510–525. https://doi.org/10.1016/j.jseaes.2012.10.037

    Article  Google Scholar 

  37. Tewari, H.C., Prasad, B.R., and Kumar, P., Structure and Tectonics of the Indian Continental Crust and Its Adjoining Region: Deep Seismic Studies, Amsterdam: Elsevier, 2018.

    Google Scholar 

  38. Wan, T., Zhao, Q., Lu, H., Wang, Q., and Sun, C., Discussion on the special lithosphere type in Eastern China, Earth Sci., 2016, vol. 5, no. 1, pp. 1–12. https://doi.org/10.11648/j.earth.20160501.11

    Article  Google Scholar 

  39. Yanovskaya, T.B., Development of techniques for solving surface-wave tomography problems using the Backus–Hilbert method, Vychisl. Seismol., 2001, no. 32, pp. 11–26.

  40. Yanovskaya, T.B., Poverkhnostno-volnovaya tomografiya v seismologicheskikh issledovaniyakh (Surface-Wave Tomography in Seismological Studies), St. Petersburg: Nauka, 2015.

  41. Yanovskaya, T.B. and Kozhevnikov, V.M., 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data, Phys. Earth Planet. Int., 2003, vol. 138, pp. 263–278.

    Article  Google Scholar 

  42. Yanovskaya, T.B. and Kozhevnikov, V.M., Anisotropy of the upper mantle of the Asian continent by group velocities of Rayleigh and Love waves, Geol. Geofiz., 2006, vol. 47, pp. 622–629.

    Google Scholar 

  43. Yanovskaya, T.B., Antonova, L.M., and Kozhevnikov, V.M., Lateral variations of the upper mantle structure in Eurasia from group velocities of surface waves, Phys. Earth Planet. Int., 2000, vol. 122, pp. 19–32.

    Article  Google Scholar 

  44. Zhao, D., Yu, Sh., and Ohtani, E., East Asia: Seismotectonics, magmatism and mantle dynamics, J. Asian Earth Sci., 2011, vol. 40, pp. 689–709. https://doi.org/10.1016/j.jseaes.2010.11.013

    Article  Google Scholar 

  45. Zhou, L., Xie, J., Shen, W., Zheng, Y., Yang, Y., Shi, H., and Ritzwoller, M.H., The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography, Geophys. J. Int., 2012, vol. 189, pp. 1565–1583. https://doi.org/10.1111/j.1365-246X.2012.05423.x

    Article  Google Scholar 

  46. Zhou, Y., Nolet, G., Dahlen, F.A., and Laske, G., Global upper-mantle structure from finite-frequency surface-wave tomography, J. Geophys. Res., 2006, vol. 111, B04304. https://doi.org/10.1029/2005JB003677

    Article  Google Scholar 

  47. Zonenshain, L.P., Kuz’min, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of Lithospheric Plates of the USSR Territory), Moscow: Nauka, 1990.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Filippova.

Ethics declarations

The authors declare that there is no conflict of interests.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippova, A.I., Solovey, O.A. Surface Wave Tomography of Southeast Asia. Izv. Atmos. Ocean. Phys. 57, 729–738 (2021). https://doi.org/10.1134/S0001433821070057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821070057

Keywords:

Navigation