Skip to main content
Log in

Holocene Paradox in Astronomic Climate Theory and Problems of Orbital Tuning

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript


Orbital tuning is a technology for adjusting the time scale of a geological or climate record to achieve maximum synchronization with the cycles of orbital motion (insolation) presented in astronomical climate theory. The procedure for coordinating climatic events with orbital insolation cycles seems natural due to the fact that solar radiation is the main source of energy for hydrometeorological, biochemical, soil biological and other processes that determine the state and dynamics of the natural system of the Earth. The climate is a generalized characteristic of the state of the natural system. A paradox was found in the change in insolation and temperature in the Holocene. Based on the analysis of the causes of the Holocene paradox, it is shown that the technologies of orbital adjustment relative to the calculations of insolation performed in the astronomical climate theory are premature. The main problem of orbital alignment is to accept the direct dependence of temperature on insolation and not take into account the influence of insolation-related heat transfer mechanisms on the Earthʼs temperature regime. It is shown that, with correct calculated insolation data, the climatic–stratigraphic scale of the astronomical theory of climate is not complete or objective without taking into account the temperature changes caused by the mechanisms of heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others


  1. Berger, A. and Loutre, M.F., Astronomical solutions for paleoclimate studies over the last 3 million years, Earth Planet. Sci. Lett., 1992, vol. 111, pp. 369–382.

    Article  Google Scholar 

  2. Bol’shakov, V.A., Novaya kontseptsiya orbital’noi teorii paleoklimata (New Conception of the Orbital Theory of Paleoclimate), Moscow: MGU, 2003.

  3. Brouwer, D. and Van Woerkom, A.J.J., The secular variation of the orbital elements of the principal planets, Astron. Pap., 1950, vol. 13, pp. 81–107.

    Google Scholar 

  4. Brooks, C.E.P., Climates Through the Ages, London: Ernest Benn Ltd., 1949; Moscow: Inostrannaya literatura, 1952.

  5. Chetvertichnyi period v SShA (The Quaternary Period in the USA), Markov, K.K., Ed., Moscow: Mir, 1968, vol. 1.

  6. Cionco, R.G. and Soon, W.W.-H., Short-term orbital forcing: A quasi-review and a reappraisal of realistic boundary conditions for climate modeling, Earth Sci. Rev., 2017, vol. 166, pp. 206–222.

    Article  Google Scholar 

  7. Climatic Change, Gribbin, J, Ed., Cambridge: Cambridge Univ. Press, 1978; Leningrad: Gidrometeoizdat, 1980.

  8. Fedorov, V.M., Interannual variations in the duration of the tropical year, Dokl. Earth Sci., 2013, vol. 451, no. 1, pp. 750–753.

    Article  Google Scholar 

  9. Fedorov, V.M., Solnechnaya radiatsiya i klimat Zemli (Solar Radiation and the Earth’s Climate), Moscow: Fizmatlit, 2018.

  10. Fedorov, V.M., The problem of meridional heat transport in the astronomical climate theory, Izv., Atmos. Ocean. Phys., 2019, vol. 18, no. 11, pp. 1572–1583.

    Article  Google Scholar 

  11. Fedorov, V.M., Contrast of annual insolation temperatures and tendencies of long-term changes in near-surface air temperature, Tr. Karadag. Nauchn. Stn. im. T.I. Vyazemskogo – Prir. Zapov. Ross. Akad. Nauk, 2020, no. 1, pp. 64–76.

  12. Fedorov, V.M. and Frolov, D.M., Little Ice Age in the Earth’s life and its possible origins, 2020, vol. 42, no. 1, pp. 4–12.

  13. Fedorov, V.M. and Kostin, A.A., Computing the Earth’s insolation for the period from 3000 BCE to 2999 CE, Protsessy Geosredakh, 2019, no. 2, pp. 254–262.

  14. Head, M.J., Formal subdivision of the quaternary system/period: Present status and future directions, Quat. Int., 2019, vol. 500, pp. 32–51.

    Article  Google Scholar 

  15. Imbrie, J. and Imbrie, K.P. Ice Ages: Solving the Mystery, Harvard Univ. Press, 1986; Moscow: Progress, 1988.

  16. Imbrie, J. and Imbrie, J.Z., Modeling the climatic response to orbital variations, Science, 1980, vol. 207, pp. 943–953.

    Article  Google Scholar 

  17. Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N.J., The orbital theory of Pleistocene climate: Support from a revised chronology, of the marine δ18O record, in Milankovitch and Climate, Berger, A., Ed., New York: Springer, 1984, vol. 1, pp. 269–305.

    Google Scholar 

  18. Laskar, J., Joutel, F., and Boudin, F., Orbital, precessional and insolation quantities for the Earth from –20 Myr to +10 Myr, Astron. Astrophys., 1993, vol. 287, pp. 522–533.

    Google Scholar 

  19. Lisiecki, L.E. and Raymo, M.E., A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 2005, vol. 20, pp. 1–17.

    Article  Google Scholar 

  20. Malinverno, A., Erba, E., and Herbert, T.D., Orbital tuning an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE, Paleoceanogr. Paleoclimatol., 2010, vol. 25, A2203.

    Article  Google Scholar 

  21. Markov, K.K., Lazukov, G.I., and Nikolaev, V.A., Chetvertichnyi period (The Quaternary Period), Moscow: MGU, 1965, vol. 1.

  22. Mel’nikov, V.P. and Smul’skii, I.I., Astronomicheskaya teoriya lednikovykh periodov: Novye priblizheniya. Reshennye i nereshennye problemy (Astronomical Theory of Ice Ages: New Approximations. Resolved and Unresolved Problems), Novosibirsk: GEO, 2009.

  23. Milankovich, M., Matematicheskaya klimatologiya i astronomicheskaya teoriya kolebanii klimata (Mathematical Climatology and Astronomical Theory of Climate Fluctuations), Moscow–Leningrad: GONTI, 1939.

  24. Monin, A.S. and Shishkov, Yu.A., Istoriya klimata (The Climate History), Leningrad: Gidrometeoizdat, 1979.

  25. Poslednii lednikovyi pokrov na severo-zapade Evropeiskoi chasti SSSR (The Last Ice Cover in the Northeast of the USSR), Gerasimov, I.P., Ed., Moscow: Nauka, 1969.

    Google Scholar 

  26. Shackleton, N.J. and Hall, M.A., Oxygen and carbon isotope stratigraphy of DSDP HOLE 552A: Plio–Pleistocene glacial history, Initial Rep. Deep Sea Drill. Proj., 1984, vol. 81, pp. 599–609.

    Google Scholar 

  27. Sharaf, Sh.G. and Budnikova, N.A., Secular changes in the Earth’s orbit and astronomical theory of climate fluctuations, Tr. Inst. Teor. Astron. Akad. Nauk SSSR, 1969, no. 14, pp. 48–84.

  28. Shuleikin, V.V., Fizika morya (Marine Physics), Moscow: AN SSSR, 1953.

  29. Sidorenkov, N.S., Atmosfernye protsessy i vrashchenie Zemli (Atmospheric Processes and the Earth’s Rotation), St. Petersburg: Gidrometeoizdat, 2002.

  30. Smulsky, J.J., A New theory of change in the insolation of the Earth over millions of years against marine isotope stages, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 7, pp. 721–746.

    Article  Google Scholar 

  31. Walker, M., Head, M.J., Lowe, J., Berkelhammer, M., Björck, S., Cheng, H., Fisher, D., Gkinis, V., Long, A., Newnham, R., Rasmussen, S.O., and Weiss, H., Subdividing the Holocene Series/Epoch: Formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes, J. Quat. Sci., 2019, vol. 34, no. 3, pp. 173–186.

    Article  Google Scholar 

Download references


This research was carried out as part of the theme “Paleoclimates, Development of the Natural Environment and Long-Term Forecast of Its Changes” (АААА-А16-116032810080-2).

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. M. Fedorov.

Ethics declarations

The author declares he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, V.M. Holocene Paradox in Astronomic Climate Theory and Problems of Orbital Tuning. Izv. Atmos. Ocean. Phys. 57, 771–780 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: