Skip to main content
Log in

On Coherent and Stochastic Structures in Hydrodynamic Flows with a Velocity Shift

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We described various structures formed during the stabilization of instability in wave and vortex flows of an ideal liquid. The problem of wave structures in an incompressible fluid flow stratified by density and velocity is considered in detail. Instability stabilization occurs as a result of the interaction of an unstable wave with waves forming a resonant triplet with it. In this case, structures of a regular and stochastic nature arise. We analyzed and described the scenario of the transition of the system to the stochastic mode. The formulation corresponds to atmospheric currents under wind shear, but the results can be used in other problems of the theory of nonlinear waves and vortices. In this paper we showed that structures of a similar nature also arise in vortex flows, both ideal and viscous liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. G. Drazin, Introduction to Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  2. G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (Cambridge Univ. Press, Cambridge, 2017).

    Book  Google Scholar 

  3. G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  4. E. B. Gledzer, F. V. Dolzhanskii, and A. M. Obukhov, Hydrodynamic-Type Systems and Their Application (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  5. J. Jimenez, “Coherent structures in wall-bounded turbulence,” J. Fluid Mech. 842, 1–100 (2018).

    Article  Google Scholar 

  6. P. G. Drazin and W. H. Reid, Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  7. R. F. Blackwelder, “Coherent structures associated with turbulent transport,” in Proc. 2nd Int. Sump. on Transport Phenomena in Turbulent Flows (Tokyo, 1987), pp. 1–20.

    Google Scholar 

  8. M. Fantini, “Instability of finite-amplitude lower-neutral Eady waves,” Q. J. R. Meteorol. Soc. 132, 2157–2169 (2006).

    Article  Google Scholar 

  9. M. I. Rabinovich and A. L. Fabrikant, “Nonlinear waves in nonequilibrium media,” Radiophys. Quantum Electron. 19 (5), 508–543 (1976).

    Article  Google Scholar 

  10. M. I. Rabinovich, A. L. Fabrikant, and L. Sh. Tsimring, “Finite-dimensional spatial disorder,” Sov. Phys. Usp. 35 (8), 629–649 (1992).

    Article  Google Scholar 

  11. F. V. Dolzhanskii, V. A. Krymov, and D. Yu. Manin, “Stability and vortex structures of quasi-two-dimensional shear flows,” Sov. Phys. Usp. 33 (7), 495–520 (1990).

    Article  Google Scholar 

  12. A. Z. Loesch, “Resonant interactions between unstable and neutral baroclinic waves: Part I,” J. Atmos. Sci. 31, 1177–1201 (1974).

    Article  Google Scholar 

  13. J. Pedlosky, “The amplitude of baroclinic wave triads and mesoscale motion in the ocean,” J. Phys. Oceanogr. 5, 608–614 (1975).

    Article  Google Scholar 

  14. C.-C. P. Caulfield, “Multiple linear instability of layered stratified shear flow,” J. Fluid Mech. 258, 255–285 (1994).

    Article  Google Scholar 

  15. R. Carpenter, E. W. Tetford, E. Heretz, and G. A. Lawrence, “Instability in stratified shear flow: Review of a physical interpretation based on interacting waves,” Appl. Mech. Rev. 64 (6), 060801 (2013).

    Article  Google Scholar 

  16. I. A. Sazonov and I. G. Yakushkin, “Evolution of disturbances in a three-layer model of the atmosphere with shear instability,” Izv., Atmos. Ocean. Phys. 35 (4), 427–434. (1999).

    Google Scholar 

  17. A. A. Guha and G. Lawrence, “A wave interaction approach to studying non-modal homogeneous and stratified shear instabilities,” J. Fluid Mech. 755, 336–364 (2014).

    Article  Google Scholar 

  18. E. Heifetz, J. Mak, J. Nycander, and O. M. Umurhan, “Interacting vorticity waves as an instability mechanism for magnetohydrodynamic shear instabilities,” J. Fluid Mech. 767, 199–225 (2015).

    Article  Google Scholar 

  19. N. N. Romanova and S. Y. Annenkov, “Three-wave resonant interactions in unstable media,” J. Fluid Mech. 539, 57–91 (2005).

    Article  Google Scholar 

  20. S. V. Kostrykin, N. N. Romanova, and I. G. Yakushkin, “On stochastic stabilization of the Kelvin–Helmholtz instability by three-wave resonant interaction,” Chaos 21, 043117 (2011). https://doi.org/10.1063/1.3656800

    Article  Google Scholar 

  21. N. N. Romanova, O. G. Chkhetiani, and I. G. Yakushkin, “Influence of nonlinear interactions on the development of instability in hydrodynamic wave systems,” J. Exp. Theor. Phys. 122 (5) 902–914 (2016).

    Article  Google Scholar 

  22. N. N. Romanova, “Hamiltonian approach to the derivation of evolution equations for wave trains in weakly unstable media,” Nonlinear Proc. Geophys. 5, 241–253 (1998).

    Article  Google Scholar 

  23. N. N. Romanova and I. G. Yakushkin, “Hamiltonian description of motion in a perfect stratified fluid,” Dokl. Phys. 46 (10), 742–746 (2001).

    Article  Google Scholar 

  24. F. V. Dolzhansky, “On the mechanical prototypes of fundamental hydrodynamic invariants and slow manifolds,” Phys.-Usp. 48 (12), 1205–1234 (2005).

    Article  Google Scholar 

  25. F. V. Dolzhanskii, Basics of Geophysical Hydrodynamics (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  26. G. M. Zaslavskii, Stochasticity of Dynamical Systems (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  27. G. M. Zaslavskii, Physics of Chaos in Hamiltonian Systems (Inst. komp’yuternykh issledovanii, Moscow–Izhevsk, 2004) [in Russian].

  28. M. I. Rabinovich and D. I. Trubetskov, Introduction to the Theory of Oscillations and Waves (Regulyarnaya i khaoticheskaya dinamika, 2000) [in Russian].

  29. E. Van Groesen, “Deformation of coherent structures,” Rep. Prog. Phys. 59, 511–600 (1996).

    Article  Google Scholar 

  30. F. V. Dolzhanskii and V. M. Ponomarev, “Simplest slow manifolds of barotropic and baroclinic motions of a rotating fluid,” Izv., Atmos. Ocean. Phys. 38 (3), 277–290 (2002).

    Google Scholar 

  31. S. N. Gurbatov, A. I. Saichev, and I. G. Yakushkin, “Nonlinear waves and one-dimensional turbulence in nondispersive media,” Sov. Phys. Usp. 26 (10), 857–876 (1983).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to N.N. Romanova and O.G. Chkhetiani for their interest in this paper and our constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Yakushkin.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakushkin, I.G. On Coherent and Stochastic Structures in Hydrodynamic Flows with a Velocity Shift. Izv. Atmos. Ocean. Phys. 58, 7–17 (2022). https://doi.org/10.1134/S0001433821060104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821060104

Keywords:

Navigation