Skip to main content
Log in

Operational Forecast of Water Dynamics at the Black Sea Sub-Satellite Polygon “Gelendzhik”

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A σ-coordinate operational model for forecasting the state of waters at the Black Sea sub-satellite polygon in the area of Gelendzhik is presented. The model is developed based on the double nested grid technology. The data for setting the initial and boundary conditions of the model comes from the Black Sea Coastal Forecasting System. The model is able to reproduce the submesoscale variability of currents at the test site. An example of a 3-day forecast of temperature, salinity, and current velocity fields for the winter season is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. B. Zalesny, A. V. Gusev, and V. I. Agoshkov, “Modeling Black Sea circulation with high resolution in the coastal zone,” Izv., Atmos. Ocean. Phys. 52 (3), 277–293 (2016).

    Article  Google Scholar 

  2. B. V. Divinsky, S. B. Kuklev, A. G. Zatsepin, B. V. Chubarenko, “Simulation of submesoscale variability of currents in the Black Sea coastal zone,” Oceanology (Engl. Transl.) 55 (6), 814–819 (2015).

  3. C. Enriquez, G. Shapiro, A. Souza, and A. Zatsepin, “Hydrodynamic modelling of mesoscale eddies in the Black Sea,” Ocean Dyn. 55, 476–489 (2005).

    Article  Google Scholar 

  4. S. Grayek, E. Stanev, and R. Kandilarov, “On the response of the Black Sea level to external forcing: Altimeter data and numerical modelling,” Ocean Dyn. 60 (1), 123–140 (2010).

    Article  Google Scholar 

  5. K. A. Korotenko, “Modeling mesoscale circulation of the Black Sea,” Oceanology (Engl. Transl.) 55 (6), 820–826 (2015).

  6. O. A. Dymova, “Modeling mesoscale and submesoscale processes in coastal zones of the Black Sea,” Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, No. 8, 21–30 (2017).

    Google Scholar 

  7. S. G. Demyshev, “Prognostic numerical analysis of currents in the Black Sea with high horizontal resolution,” Phys. Oceanogr. 21 (1), 33–44 (2011).

    Article  Google Scholar 

  8. S. G. Demyshev and N. A. Evstigneeva, “Modeling meso- and sub-mesoscale circulation along the eastern Crimean coast using numerical calculations,” Izv., Atmos. Ocean. Phys. 52 (5) 560–569 (2016).

    Article  Google Scholar 

  9. O. Kordas, A. Gourjii, E. Nikiforovich, and D. Cherniy, “A study on mathematical short-term modelling of environmental pollutant transport by sea currents: The Lagrangian approach,” J. Environ. Accounting Manage. 5, 86–103 (2017).

    Article  Google Scholar 

  10. D. Bruciaferri, G. Shapiro, S. Stanichny, A. Zatsepin, T. Ezer, F. Wobus, X. Francis, and D. Hilton, “A new numerical model for the Black Sea circulation,” Geophys. Res. Abs. 21, EGU2019-5933 (2019).

    Google Scholar 

  11. A. I. Mizyuk, A. A. Aleskerova, and A. A. Kubryakov, “Circulation in the Kerch Gulf according to the results of numerical modeling with local refinement of the computational grid,” in The Seas of Russia: Science, Security, and Resources. Conference Proceedings (Morskoi gidrofizicheskii institute, Sevastopol, 2017), pp. 40–41 [in Russian].

  12. Demyshev, S.G., “A numerical model of online forecasting Black Sea currents,” Izv., Atmos. Ocean. Phys. 48 (1), 120–132 (2012).

    Article  Google Scholar 

  13. S. A. Ciliberti, E. Peneva, A. Storto, R. Kandilarov, R. Lecci, C. Yang, G. Coppini, S. Masina, and N. Pinardi, “Implementation of Black Sea numerical model based on NEMO and 3DVAR data assimilation scheme for operational forecasting,” Geophys. Res. Abs. 18, EGU2016-16222 (2016).

    Google Scholar 

  14. S. A. Ciliberti, E. Peneva, A. Storto, B. Lemieux-Dudon, E. Ozsoy, G. Coppini, S. Masina, N. Pinardi, and A. Palazov, “Development of a regional NEMO-based configuration for the Black Sea in the framework of Copernicus Marine Environment and Monitoring Service: Recent developments and future perspectives,” Geophys. Res. Abs. 20, EGU2018-18191 (2018).

    Google Scholar 

  15. A. Palazov, S. Ciliberti, E. Peneva, M. Gregoire, J. Staneva, B. Lemieux-Dudon, S. Masina, N. Pinardi, L. Vandenbulcke, A. Behrens, L. Lima, G. Coppini, V. Marinova, V. Slabakova, R. Lecci, et al., “Black Sea Observing System,” Front. Mar. Sci., 6, 315 (2019).

    Article  Google Scholar 

  16. G. K. Korotaev, T. Oguz, V. L. Dorofeyev, S. G. Demyshev, A. I. Kubryakov, and Yu. B. Ratner, “Development of Black Sea nowcasting and forecasting system,” Ocean Sci. 7, 629–649 (2011).

    Article  Google Scholar 

  17. G. K. Korotaev, Yu. B. Ratner, V. L. Dorofeev, A. I. Kubryakov, S. Stefanescu, and V. V. Fomin, “Operational forecast of the Black Sea dynamics. Coastal to global operational oceanography: Achievements and challenges,” in Proceedings of the Fifth International Conference on EuroGOOS, 20–22 May 2008, Exeter, UK (SMHI, Norrköping, Sweden, 2010), pp. 177–183.

  18. N. A. Diansky, V. V. Fomin, N. V. Zhokhova, and A. N. Korshenko, “Simulations of currents and pollution transport in the coastal waters of Big Sochi,” Izv., Atmos. Ocean. Phys. 49 (6), 611–621 (2013).

    Article  Google Scholar 

  19. A. V. Gusev, V. B. Zalesny, and V. V. Fomin, “Technique for simulation of Black Sea circulation with increased resolution in the area of the IO RAS polygon,” Oceanology (Engl. Transl.) 57 (6), 880–892 (2017).

  20. A. I. Kubryakov, G. K. Korotaev, V. L. Dorofeev, Y. B. Ratner, A. Palazov, N. Valchev, et al., “Black Sea coastal forecasting system,” Ocean Sci. 8, 183–196 (2012).

    Article  Google Scholar 

  21. A. Kubryakov, G. Korotaev, Y. Ratner, A. Grigoriev, A. Kordzadze, S. Stefanescu, N. Valchev, and R. Matescu, “The Black Sea nearshore regions forecasting system: Operational implementation. Coastal to global operational oceanography: Achievements and challenges,” in Proceedings of the Fifth International Conference on EuroGOOS, 20–22 May 2008, Exeter, UK (SMHI, Norrköping, Sweden, 2010), pp. 293–296.

  22. Yu. B. Ratner, A. L. Kholod, A. I. Kubryakov, T. M. Bayankina, and M. V. Ivanchik, “Using measurement data from SVP-BTC and ARGO drifting buoys for validating predicted water temperatures in the coastal region of the Black Sea,” Morsk. Gidrofiz. Zh., No. 5, 33–48 (2014).

  23. A. V. Grigor’ev, V. M. Gruzinov, A. G. Zatsepin, A. A. Vorontsov, A. I. Kubryakov, and A. O. Shapoval, “Operational oceanography of the northeastern Black Sea: Assessment of simulation accuracy in comparison with contact observation data. Hydrometeorological studies and forecasts,” Tr. Gidrometeorol. Tsentra Ross., No. 1, 79–96 (2018).

  24. A. I. Kubryakov, A. V. Grigoriev, A. A. Kordzadze, et al., “Nowcasting/forecasting subsystem of the circulation in the Black Sea nearshore regions,” in European Operational Oceanography: Present and Future, 4th EuroGOOS Conference, 6–9 June 2005 (Brest, France, 2006), pp. 605–610.

  25. A. A. Kordzadze and D. I. Demetrashvili, “Operational forecast of hydrophysical fields in the Georgian Black Sea coastal zone within the ECOOP,” Ocean Sci. 7, 793–803 (2011).

    Article  Google Scholar 

  26. Eremeev V.N., Kubryakov A.I., and Shchiptsov A.A., “Calculation of anthropogenic pollution transport at the southern coast of the Crimea caused by an accident in the Laspinsky Bay,” in Global Observing System for the Black Sea: Principal and Applied Aspects (Morskoi gidrofizicheskii institute, Sevastopol, 2000), pp. 45–55 [in Russian].

  27. A. I. Kubryakov and M. A. Popov, “Modeling of circulation and propagation of contaminating impurities in the Balaklava Bay,” Phys. Oceanogr. 15 (3), 180–191 (2005).

    Article  Google Scholar 

  28. V. V. Knysh, A. I. Kubryakov, N. V. Inyushina, and G. K. Korotaev, “Reconstruction of the climatic seasonal circulation the Black Sea using a σ-coordinate model with assimilated temperature and salinity data,” in Ecological Safety of Coastal and Shelf Zones and Integrated Exploitation of the Shelf Resources (EKOSI-Gidrofizika, Sevastopol’, 2008), No. 16, pp. 243–265 [in Russian].

  29. V. V. Knysh, G. K. Korotaev, V. A. Moiseenko, A. I. Kubryakov, and V. N. Belokopytov, “Seasonal and interannual variability of Black Sea hydrophysical fields reconstructed from 1971–1993 reanalysis data,” Izv., Atmos. Ocean. Phys. 47 (3) 399–411 (2011).

    Article  Google Scholar 

  30. A. I. Kubryakov, V. V. Suslin, T. Ya. Churilova, and G. K. Korotaev, “Influence of optical properties of water on the dynamics of upper layers of the Black Sea from 1985 to 2001,” in Ecological Safety of Coastal and Shelf Zones and Integrated Exploitation of the Shelf Resources (MGI NAN Ukrainy, Sevastopol, 2012), Vol. 2, pp. 224–255 [in Russian].

    Google Scholar 

  31. A. I. Kubryakov, “The nested grid technique for creating a hydrophysical monitoring system for coastal areas of the Black Sea,” Ekol. Bezop. Pribrezhn. Shel’f. Zon, No. 11, 31–50 (2004).

    Google Scholar 

  32. https://ocean.ru/index.php/otdeleniya-i-filialy-io-ran/ yuzhnoe-otdelenie/item/1060-chernomorskij-poligon-io-ran-gelendzhik-poligon-gelendzhik.

  33. A. V. Grigor’ev, A. G. Zatsepin, A. A. Vorontsov, A. I. Kubryakov, and A. O. Shapoval, “Qualitative and quantitative estimates for adequate simulation of the mesoscale dynamics of waters in the northeastern Black Sea according to observation data,” in Mesoscale and Submesoscale Processes in the Hydrosphere and Atmosphere (MSP-2018): Proceedings of the International Symposium (Inst. okeanol. im. P.P. Shirshova RAN, Mosk. Univ. im. S.Yu. Vitte, Moscow, 2018), pp. 94–97 [in Russian].

  34. A. V. Grigor’ev, A. A. Kubryakov, A. I. Kubryakov, and K. O. Shapoval, “Operational oceanography of the northeastern Black Sea: Assessment of simulation accuracy in comparison with satellite data,” Ekol. Bezop. Pribrezhn. Shel’f. Zon Morya, No. 4, 33–39 (2019).

    Google Scholar 

  35. V. N. Belokopytov, A. I. Kubryakov, and S. F. Pryakhina, “Modeling of water pollution propagation in the Sevastopol Bay,” Phys. Oceanogr. 26 (1), 3–12 (2019).

    Article  Google Scholar 

  36. J. Smagorinsky, “General circulation experiments with primitive equations, I. The basic experiment,” Mon. Weather Rev. 91, 99–164 (1963).

    Article  Google Scholar 

  37. G. L. Mellor and T. Yamada, “Development of a turbulence closure model for geophysical fluid problems,” Rev. Geophys. Space Phys. 20 (4), 851–875 (1982).

    Article  Google Scholar 

  38. A. Arakawa and V. R. Lamb, “Computational design of the basic dynamical processes of the UCLA general circulation model,” in Methods in Computational Physics: Advances in Research and Applications (Elsevier, 1977), pp. 173–265; General Circulation Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1981), pp. 197–284 [in Russian].

  39. A. F. Blumberg and G. L. Mellor, “A description of a three-dimensional coastal ocean model,” in Three Dimensional Shelf Models, Coastal Estuarine Science, Ed. by N. Heaps (AGU, Washington, D.C., 1987), Vol. 5, pp. 1–16.

    Google Scholar 

  40. R. V. Madala and S. A. Piacsek, “A semi-implicit numerical model for baroclinic oceans,” J. Comput. Phys., No. 23, 167–178 (1997).

  41. R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik,” Math. Ann. 36, 32–34 (1928);

    Article  Google Scholar 

  42. Usp. Mat. Nauk, No. 8, 125–160 (1941).

  43. P. K. Smolarkiewicz, “A fully multidimensional positive definite advection transport algorithm with small implicit diffusion,” J. Comput. Phys. 54, 325–362 (1984).

    Article  Google Scholar 

  44. A. Papadopoulus, P. Katsafados, G. Kallos, and S. Nickovic, “The weather forecasting system for Poseidon: An overview,” J. Atmos. Ocean Sci. 8 (2–3), 219–237 (2002).

    Article  Google Scholar 

  45. V. G. Krivosheya, V. B. Titov, I. M. Ovchinnikov, et al., “New data on the current regime on the shelf of the Northeastern Black Sea,” Oceanology (Engl. Transl.) 41 (3), 307–317 (2001).

  46. A. G. Zatsepin, V. B. Piotoukh, A. O. Korzh, O. N. Kukleva, and D. M. Soloviev, “Variability of currents in the coastal zone of the Black Sea from long-term measurements with a bottom mounted ADCP,” Oceanology (Engl. Transl.) 52 (5) 579–592 (2012).

Download references

Funding

This work was performed under state order 0555-2021-0003 “The Development of Operational Oceanology Methods Based on Interdisciplinary Research of Processes of the Formation and Evolution of the Marine Environment and Mathematical Modeling with the involvement of Remote and Contact Measurement Data” and supported by the Russian Foundation for Basic Research, project nos. 18-05-80028 “Dangerous Phenomena” and 18-45-920018 r_a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Kubryakov, A. V. Grigoriev or V. A. Kubryakov.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubryakov, A.I., Grigoriev, A.V. & Kubryakov, V.A. Operational Forecast of Water Dynamics at the Black Sea Sub-Satellite Polygon “Gelendzhik”. Izv. Atmos. Ocean. Phys. 57, 642–649 (2021). https://doi.org/10.1134/S0001433821060074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821060074

Keywords:

Navigation