Skip to main content
Log in

Vertical Turbulent Dust-Aerosol Fluxes

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Vertical turbulent dust-aerosol fluxes over a desertificated area in Astrakhan oblast under almost quasicontinuous saltation conditions have been calculated based on measurements (with a resolution of 1 s) of fluctuations in aerosol-particle concentrations and the vertical wind velocity component. It is shown that the time variability of the density of vertical turbulent dust-aerosol fluxes within a scale range of 30 s to 1 h is determined by convectively caused variations in both horizontal and vertical wind velocity components in the atmospheric surface layer. The normalized turbulent flux or the rate of dust-aerosol removal reaches 4–5 cm/s. The daily variations in vertical turbulent aerosol fluxes are in agreement with those in turbulent heat fluxes. Particle-size dependences of the mass turbulent dust-aerosol flux have been obtained. The method of estimating low-frequency variations in the density of turbulent dust-aerosol fluxes over a desertificated area has been proposed based on measurement data on the wind velocity components and the saltation threshold velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. Mahowald, S. Albani, J. F. Kok, S. Engelstaedter, R. Scanza, D. S. Ward, and M. G. Flanner, “The size distribution of desert dust aerosols and its impact on the Earth system,” Aeolian Res. 15, 53–71 (2014).

    Article  Google Scholar 

  2. J. F. Kok, E. J. Parteli, T. I. Michaels, and D. Bou Karam, “The physics of wind-blown sand and dust,” Rep. Prog. Phys. 75, 1–119 (2012).

    Article  Google Scholar 

  3. B. A. Mather, J. M. Prospero, D. Mackie, D. Gaiero, P. P. Hesse, and Y. Balkanski, “Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum,” Earth Sci. Rev. 99, 61–97 (2010).

    Article  Google Scholar 

  4. R. Miller, I. Tegen, and J. Perlwitz, “Surface radiative forcing by soil dust aerosols and the hydrologic cycle,” J. Geophys. Res. 109, D04203 (2004).

    Google Scholar 

  5. Y. Balkanski, M. Schulz, T. Claquin, and S. Guibert, “Re-evaluation of mineral aerosol radiative forcings suggest a better agreement with satellite and AERONET data,” Atmos. Chem. Phys. 7, 81–95 (2007).

    Article  Google Scholar 

  6. P. DeMott, K. Sassen, M. Poellot, D. Baumgardner, D. Rogers, S. Brooks, A. Prenni, and S. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30 (14), 1732 (2003).

    Article  Google Scholar 

  7. N. Mahowald and I. Kiehl, “Mineral aerosol and cloud interactions,” Geophys. Res. Lett. 30 (9), 1475 (2003).

    Article  Google Scholar 

  8. J. Hand, N. Mahowald, Y. Chen, R. Siefert, C. Luo, A. Subramaniam, and I. Fung, “Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications,” J. Geophys. Res. 109, D17205 (2004).

    Article  Google Scholar 

  9. A. Krishnamurthy, J. K. Moore, N. Mahowald, C. Luo, and C. S. Zender, “Impacts of atmospheric nutrient inputs on marine biogeochemistry,” J. Geophys. Res. 115, G01006 (2010).

    Google Scholar 

  10. B. Brunekreef and S. T. Holgate, “Air pollution and health,” Lancet 360, 1233–1242 (2002).

    Article  Google Scholar 

  11. S. A. Morman and G. S. Plumlee, “The role of airborne mineral dusts in human disease,” Aeolian Res. 9, 203–212 (2013).

    Article  Google Scholar 

  12. G. S. Golitsyn, I. G. Granberg, A. E. Aloyan, A. V. Andronova, V. O. Arutyunyan, B. V. Vinogradov, E. B. Gabunshchina, G. I. Gorchakov, E. M. Dobryshman, and V. M. Ponomarev, “Study of the thermoconvective removal of arid aerosol in the Kalmykia black lands,” in Natural and Anthropogenic Aerosols (NII Khimii SPbGU, St. Petersburg, 1998), pp. 342–348 [in Russian].

  13. D. A. Gillette, D. A. Blifford, and D. W. Fryrear, “The influence of wind velocity on the size distributions of aerosols generated by the wind erosion of soils,” J. Geophys. Res. 79, 4068–4075 (1974).

    Article  Google Scholar 

  14. B. D. Belan, D. M. Kabanov, and M. V. Panchenko, “Aircraft sounding of atmospheric parameters in a dust experiment,” in The Soviet–American Experiment on Arid Aerosol Studies, Ed. by G. S. Golitsyn (Gidrometeoizdat, St. Petersburg, 1992), pp. 4068–4075 [in Russian].

    Google Scholar 

  15. O. E. Semenov, Introduction to Experimental Meteorology and Climatology of Sand Storms (KazNIIEK, Almaty, 2011) [in Russian].

  16. G. I. Gorchakov, B. M. Koprov, and K. A. Shukurov, “Wind effect on aerosol transport from the underlying surface,” Izv., Atmos. Ocean. Phys. 40 (6), 679–694 (2004).

    Google Scholar 

  17. A. V. Karpov, “Fluctuations of the microstructure of coarse and submicron aerosol in a desertified area,” Opt. Atmos. Okeana 21 (10), 844–849 (2008).

    Google Scholar 

  18. O. G. Chkhetiani, E. B. Gledzer, M. S. Artamonova, and M. A. Iordanskii, “Dust resuspension under weak wind conditions: Direct observations and model,” Atmos. Chem. Phys. 12, 5147–5162 (2012).

    Article  Google Scholar 

  19. G. A. Loosmore and J. R. Hunt, “Below-threshold, non-abraded dust resuspension,” J. Geophys. Res. 105, 20663–20671 (2000).

    Article  Google Scholar 

  20. M. Klose and Y. Shao, “Stochastic parameterization of dust emission and application to convective atmospheric conditions,” Atmos. Chem. Phys. 12, 7309–7320 (2012).

    Article  Google Scholar 

  21. T. Ju, X. Li, H. Zhang, X. Cai, and Y. Song, “Comparison of two different dust emission mechanisms over the Horqin Sandy Land area: Aerosols contribution and size distributions,” Atmos. Environ. 176, 82–90 (2018).

    Article  Google Scholar 

  22. X. L. Liu and H. S. Zhang, “Size distribution of dust aerosols observed over the Horqin Sandy Land in inner Mongolia, China,” Aeolian Res. 17, 231–239 (2015).

    Article  Google Scholar 

  23. X. Y. Li, M. Klose, Y. Shao, and H. S. Zhang, “Convective turbulent dust emission (CTDE) observed over Horqin Sandy Land area and validation of CTDE scheme,” J. Geophys. Res.: Atmos. 119, 9980–9992 (2014).

    Article  Google Scholar 

  24. N. V. Vazaeva, O. G. Chkhetiani, and L. O. Maksimenkov, “Organized roll circulation and transport of mineral aerosols in the atmospheric boundary layer,” Izv., Atmos. Ocean. Phys. 55 (2), 152–166 (2019).

    Article  Google Scholar 

  25. E. A. Malinovskaya and O. G. Chkhetiani, “On conditions of wind-blown removal of soil particles” Vychisl. Mekh. Sploshnykh Sred 13 (2), 175–188 (2020).

    Google Scholar 

  26. S. C. Alfaro, A. Gaudichet, L. Gomes, and M. Maille, “Modeling the size distribution of a soil aerosol produced by sandblasting,” J. Geophys. Res. 102, 11239–11249 (1997).

    Article  Google Scholar 

  27. Y. Shao, M. R. Raupach, and P. A. Findlater, “The effect of saltation bombardment on the entrainment of dust by wind,” J. Geophys. Res. 98, 12719–12726 (1993).

    Article  Google Scholar 

  28. R. A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941).

    Google Scholar 

  29. X. Zheng, Mechanics of Wind Blown Sand Movements (Springer, Berlin, 2009).

    Book  Google Scholar 

  30. M. Creyssels, P. Dupont, A. El Moctar, A. Valance, I. Cantat, J. T. Jenkins, J. M. Pasini, and K. R. Rasmussen, “Saltating particles in a turbulent boundary layer: Experiment and theory,” J. Fluid Mech. 625, 47–74 (2009).

    Article  Google Scholar 

  31. S. L. Namikas, “Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach,” Sedimentology 50, 303–326 (2003).

    Article  Google Scholar 

  32. G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, I. A. Zlobin, D. V. Buntov, and A. V. Sokolov, “Study of the dynamics of saltating sand grains over desertified territories,” Dokl. Earth. Sci. 452 (6), 1067–1073 (2013).

    Article  Google Scholar 

  33. G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, A. V. Sokolov, and D. V. Buntov, “Influence of the saffman force, lift force, and electric force on sand grain transport in a wind–sand flow,” Dokl. Earth. Sci. 467 (3), 314–319 (2016).

    Article  Google Scholar 

  34. G. I. Gorchakov, A. V. Karpov, R. A. Gushchin, O. I. Datsenko, and D. V. Buntov, “Vertical profiles of the saltating particle concentration on a desertified area,” Dokl. Earth. Sci. 496 (2), 119–124 (2021).

    Article  Google Scholar 

  35. B. Marticorena and G. Bergametti, “Modeling the atmospheric dust cycle. Part 1: Design of a soil-derived dust emission scheme,” J. Geophys. Res. 100, 16415–16430 (1995).

    Article  Google Scholar 

  36. H. Lu and Y. Shao, “A new model for dust emission by saltation bombardment,” J. Geophys. Res.: Atmos. 104 (D14), 16827–16842 (1999).

    Article  Google Scholar 

  37. M. Sow, S. C. Alfaro, and J. Z. Rajot, “Comparison of the size-resolved dust emission fluxes measured over a Sahelian source with the Dust Production Model (DPM) predictions,” Atmos. Chem. Phys. Discuss. 11, 11077–11107 (2011).

    Google Scholar 

  38. G. I. Gorchakov, B. M. Koprov, and K. A. Shukurov, “Vertical turbulent aerosol fluxes over desertized areas,” Izv., Atmos. Ocean. Phys. 38 (Suppl. 1), S138–S147 (2002).

    Google Scholar 

  39. G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, D. V. Buntov, R. A. Gushchin, and O. I. Datsenko, “Dust aerosol emission on the desertified area,” Proc. SPIE–Int. Soc. Opt. Eng. 11560, 76 (2020).

  40. G. I. Gorchakov, A. V. Karpov, and R. A. Gushchin, “Turbulent Fluxes of the Dust Aerosol on the Desertified Area,” Dokl. Earth Sci. 494 (2), 799–802 (2020).

    Article  Google Scholar 

  41. G. I. Gorchakov, D. V. Buntov, A. V. Karpov, V. M. Kopeikin, S. F. Mirsaitov, R. A. Gushchin, and O. I. Datsenko, “Wind effect on the size distribution of saltating particles,” Atmos. Oceanic Opt. 33 (2), 198–205 (2020).

    Article  Google Scholar 

  42. G. I. Gorchakov, D. V. Buntov, A. V. Karpov, V. M. Kopeikin, S. F. Mirsaitov, R. A. Gushchin, and O. I. Datsenko, “Vertical profile of saltating particle concentration over semidesert area,” IOP Conf. Ser.: Earth Environ. Sci. 606, 012015 (2020).

  43. D. V. Buntov, R. A. Gushchin, and O. I. Datsenko, “Four-channel photoelectric counter of saltating sand particles,” Atmos. Oceanic Opt. 31 (6), 548–551 (2018).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Fund, project no. 20-17-00214.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Karpov, G. I. Gorchakov, R. A. Gushchin or O. I. Datsenko.

Additional information

Translated by B. Dribinskaya

The paper was prepared based on an oral report presented at the All-Russia Conference on Turbulence, Dynamics of Atmosphere and Climate dedicated to the memory of Academician A.M. Obukhov (Moscow, November 10–12, 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, A.V., Gorchakov, G.I., Gushchin, R.A. et al. Vertical Turbulent Dust-Aerosol Fluxes. Izv. Atmos. Ocean. Phys. 57, 495–503 (2021). https://doi.org/10.1134/S000143382105008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382105008X

Keywords:

Navigation