Skip to main content
Log in

Dependence of the Anthropogenic Heat Flux on Air Temperature (Using St. Petersburg as an Example)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The anthropogenic heat flux associated with energy consumption for heating buildings has a significant impact on the heat balance of urbanized areas and the intensity of the urban heat island. The energy consumption of the urban economy is highly dependent on meteorological conditions, as well as on their annual and daily trend and variations. This is especially true for the part of energy consumption that is spent on maintaining a comfortable indoor temperature. This article uses the OpenStreetMap open web mapping platform which allows one to make an inventory of anthropogenic heat fluxes by the difference between internal and external air temperatures and based on building codes and thermophysical properties of enclosing structures. A simple nonstationary energy balance model of the interaction of the urban boundary layer of the atmosphere with the urban canopy layer (UCL) containing anthropogenic heat sources is formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. L. Allen, F. Lindberg, and C. S. B. Grimmond, “Global city scale urban anthropogenic heat flux: model and variability,” Int. J. Climatol. 31, 1990–2005 (2011).

    Article  Google Scholar 

  2. T. R. Oke, G. Mills, A. Christen, and J. A. Voogt, Urban Climates (Cambridge Univ. Press, Cambridge, 2017).

    Book  Google Scholar 

  3. A. V. Kislov, The Moscow Climate under Global Warming (MGU, Moscow, 2017) [in Russian].

    Google Scholar 

  4. Yu. V. Gavrilova, S. P. Smyshlyaev, and A. G. Makhura, “Model study of the impact of large towns on regional weather aspects,” Uch. Zap. Ross. Gos. Med. Univ., No. 15, 107–116 (2010).

  5. A. S. Ginzburg, I. N. Belova, and N. V. Raspletina, “Anthropogenic heat fluxes in urban agglomerations,” Dokl. Earth Sci. 439 (1), 1006–1009 (2011).

    Article  Google Scholar 

  6. G. G. Aleksandrov, I. N. Belova, and A. S. Ginzburg, “Anthropogenic heat flows in the capital agglomerations of Russia and China,” 457 (1), 850–854 (2014).

  7. A. S. Ginzburg, O. A. Reshetar, and I. N. Belova, “Impact of climatic factors on energy consumption during the heating season,” Therm. Eng. 63 (9) 621–627 (2016).

    Article  Google Scholar 

  8. M. Varentsov, P. Konstantinov, A. Baklanov, I. Esau, V. Miles, and R. Davy, “Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city,” Atmos. Chem. Phys. 18, 17573–1758 (2018).

    Article  Google Scholar 

  9. A. S. Ginzburg and S. A. Dokukin, “Numerical modeling of anthropogenic heat flux impact on air temperature in Moscow in wintertime,” IOP Conf. Ser.: Earth Environ. Sci. 211, 012019 (2018). https://doi.org/10.1088/1755-1315/211/1/012019

  10. G. G. Alexandrov and A. S. Ginzburg, “Anthropogenic impact of Moscow district heating system on urban environment,” Energy Procedia 149, 161–169 (2018).

    Article  Google Scholar 

  11. I. N. Belova, A. S. Ginzburg, and L. A. Krivenok, “Heating seasons length and degree days trends in Russian cities during last half century,” Energy Procedia 149, 373–379 (2018).

    Article  Google Scholar 

  12. S. A. Dokukin and A. S. Ginzburg, “The influence of anthropogenic heat fluxes on the temperature and wind regimes of the Moscow and St. Petersburg regions,” IOP Conf. Ser.: Earth Environ. Sci. 606, 012010 (2020). https://doi.org/10.1088/1755-1315/606/1/012010

  13. P. F. Demchenko, G. S. Golitsyn, A. S. Ginzburg, and N. N. Vel’tishchev, “Assessment of the diurnal cycle of CO2 greenhouse effect according to one-dimensional models of the atmospheric vertical structure,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 30 (5), 595–600 (1994).

    Google Scholar 

  14. OpenStreetMap. https://www.openstreetmap.org. Accessed March 29, 2021.

  15. F. Salamanca, A. Krpo, A. Martilli, and A. Clappier, “A new building energy model coupled with an urban canopy parameterization for urban climate simulations. Part 1. Formulation, verification, and a sensitive analysis of the model,” Theor. Appl. Climatol. 99, 331–344 (2010).

    Article  Google Scholar 

  16. B. Bueno, M. Roth, L. Norford, and R. Li, “Computationally efficient prediction of canopy level urban air temperature at the neighborhood scale,” Urban Clim. 9, 35–53 (2014).

    Article  Google Scholar 

  17. M. Kanda, T. Kawai, M. Kanega, R. Moriwaki, K. Narita, and A. Hagishima, “A simple energy balance model for regular building array,” Boundary-Layer Meteorol. 116, 423–443 (2005).

    Article  Google Scholar 

  18. S. Ma, A. Pitman, M. Hart, J. P. Evans, N. Haghdad, and I. MacGill, “The impact of an urban canopy and anthropogenic heat fluxes on Sydney’s climate,” Int. J. Climatol. 37, 255–270 (2017).

    Article  Google Scholar 

  19. X. He, Y. Li, X. Wang, L. Chen, B. Yu, Y. Zhang, and S. Miao, “High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF/Urban modelling system,” J. Cleaner Prod. 208, 373–383 (2019).

    Article  Google Scholar 

  20. M. Balogh and G. Kristof, “Fine scale simulation of turbulent flows in urban canopy layers,” Q. J. Hung. Meteorol. Serv. 1 (1–2), 135–148 (2010).

    Google Scholar 

  21. P. Huq, A. Carrillo, L. A. White, J. Redondo, S. Dharmavaram, and S. R. Hanna, “The shear layer above and in urban canopies,” J. Appl. Meteorol. Climatol. 46, 368–376 (2007). https://doi.org/10.1175/JAM2469.1

    Article  Google Scholar 

  22. State Information System of Housing Services and Utilities (GIS HSU). https://dom.gosuslugi.ru. Accessed March 29, 2021.

  23. Building Climatology (Regulation SP 131.13330.2012). http://docs.cntd.ru/document/1200095546. Accessed March 29, 2021.

  24. Residential and Public Buildings. Microclimate Parameters for Indoor Enclosures (International Standard, GOST 30494-2011). http://docs.cntd.ru/document/ 1200095053. Accessed March 29, 2021.

  25. Thermal Performance of Buildings (Regulation SP 50.13330.2012). http://docs.cntd.ru/document/ 1200095525. Accessed March 29, 2021.

  26. E. G. Malyavina, Heat Losses of Buildings: A Reference Book (Avok-Press, Moscow, 2007) [in Russian].

    Google Scholar 

  27. V. N. Bogoslovskii, Thermal Physics of Buildings (Framework for Air Heating, Ventilation, and Conditioning) (Vyssh. shkola, Moscow, 1982) [in Russian].

  28. Unified State Fund of the All-Russian Research Institute of Hydrometeorological Information – World data Center. http://meteo.ru/data. Accessed March 29, 2021.

  29. S. G. Golovina, “Architectural and construction features of residential buildings of St. Petersburg in the second half of the 18th century,” Gradostroit. Arkhit. 10 (2), 71–77 (2020). https://doi.org/10.17673/Vestnik.2020.02.10

    Article  Google Scholar 

  30. I. Andrić, J. Fournier, B. Lacarrière, O. Le Corre, and P. Ferrão, “The impact of global warming and building renovation measures on district heating system techno-economic parameters,” Energy 150, 926–937 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to a reviewer for constructive remarks.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-05-00254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ginzburg.

Additional information

Translated by A. Nikol’skii

The paper was prepared based on an oral report presented at the All-Russia Conference on Turbulence, Dynamics of Atmosphere and Climate dedicated to the memory of Academician A.M. Obukhov (Moscow, November 10–12, 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginzburg, A.S., Evsikov, I.A. & Frolkis, V.A. Dependence of the Anthropogenic Heat Flux on Air Temperature (Using St. Petersburg as an Example). Izv. Atmos. Ocean. Phys. 57, 461–471 (2021). https://doi.org/10.1134/S0001433821050066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821050066

Keywords:

Navigation