Skip to main content
Log in

Modeling the Composition of Organic Aerosol in the Atmosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A model of the formation of surrogate organic aerosol (OA) in the atmosphere upon the condensation of different volatility component is considered. The model takes into account the physical and chemical properties of individual components, determining their partial pressures over particles (Pi, atm) and hygroscopicity. The organic compounds (OCs) (components of surrogate particles) are taken to be organic peroxides and nitrates IALD, ISNP, and INPN, which are chemical transformation products of biogenic isoprene and α-pinene. The results of calculations (using the AIOMFAC model) reveal a complex character of the changes in activity coefficients (γi) of components for variations in the composition of OA. The surrogate particles were found to be significantly hygroscopic. The equilibrium composition of particles calculated from these data for the background atmosphere and taking into account their hygroscopicity and γi of components shows clearly expressed deviations from that found under the approximation that physical and chemical properties of particle ingredients are independent, which should be taken into account in the construction of models for the formation of real secondary OA in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Kanakidou, J. H. Seinfeld, S. N. Pandis, et al., “Organic aerosol and global climate modeling: A review,” Atmos. Chem. Phys. 5 (4), 1053–1123 (2005).

    Article  Google Scholar 

  2. J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, et al., “Evolution of organic aerosols in the atmosphere,” Science 326, 1525–1529 (2009).

    Article  Google Scholar 

  3. P. Middleton, W. R. Stockwell, and W. P. L. Carter, “Aggregation and analysis of volatile organic compound emissions for regional modeling,” Atmos. Environ. 24 (5), 1107–1133 (1990).

    Article  Google Scholar 

  4. R. J. Griffin, D. R. Cocker, R. C. Flagan, and J. H. Seinfeld, “Organic aerosol formation from oxidation of biogenic hydrocarbons,” J. Geophys. Res., 104, 3555–3567 (1999).

    Article  Google Scholar 

  5. K. S. Pitzer, “Thermodynamics of electrolytes. I. Theoretical basis and general equations,” J. Phys. Chem. 77 (2), 268–277 (1973).

    Article  Google Scholar 

  6. M. E. Jenkin, “Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3,” Atmos. Chem. Phys. 4 (7), 1741–1757 (2004).

    Article  Google Scholar 

  7. D. Johnson, S. R. Utembe, M. E. Jenkin, et al., “Simulating regional scale secondary organic aerosol formation during the TORCH 2003 campaign in the southern UK,” Atmos. Chem. Phys. 6 (2), 403–418 (2006).

    Article  Google Scholar 

  8. L. E. Olcese, J. E. Penner, and S. Sillman, “Development of a secondary organic aerosol formation mechanism: Comparison with smog chamber experiments and atmospheric measurements,” Atmos. Chem. Phys. 7, 8361–8393 (2007).

    Google Scholar 

  9. D. Taraborrelli, M. G. Lawrence, T. M. Butler, R. Sander, and J. Lelieveld, “A new isoprene mechanism MIM2 for atmospheric modelling,” Atmos. Chem. Phys. 9 (8), 2751–2777 (2009).

    Article  Google Scholar 

  10. J. F. Pankow, “An absorption model of gas/particle partitioning of organic compounds in the atmosphere,” Atmos. Environ. 28 (2), 185–188 (1994).

    Article  Google Scholar 

  11. A. Zuend and J. H. Seinfeld, “Modeling the gas-particle partitioning of secondary organic aerosol: The importance of liquid-liquid phase separation,” Atmos. Chem. Phys. 12 (9), 3857–3882 (2012).

    Article  Google Scholar 

  12. A. Zuend, C. Marcolli, B. P. Luo, and T. Peter, “A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients,” Atmos. Chem. Phys. 8 (16), 4559–4593 (2008).

    Article  Google Scholar 

  13. B. D. Amiro, J. B. Todd, B. M. Wotton, et al., “Direct carbon emissions from Canadian forest fires, 1959–1999,” Can. J. For. Res. 31 (3), 512–515 (2001).

    Article  Google Scholar 

  14. J. D. Surratt, S. M. Murphy, J. H. Kroll, et al., “Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene,” J. Phys. Chem. A 110 (31), 9665–9690 (2006).

    Article  Google Scholar 

  15. A. E. Aloyan, A. N. Yermakov, and V. O. Arutyunyan, “Dynamics of gas admixtures and aerosols in forest and peat fires,” Russ. J. Numer. Anal. Math. Modell. 29 (2), 79–92 (2014).

    Article  Google Scholar 

  16. R. M. Kamens and M. Jaoui, “Modeling aerosol formation from α-Pinene + NO in the presence of natural sunlight using gas-phase kinetics and gas-particle partitioning theory,” Environ. Sci. Technol. 35 (7), 1394–1405 (2001).

    Article  Google Scholar 

  17. H. Takekawa, H. Minoura, and S. Yamazaki, “Temperature dependence of secondary organic aerosol formation by photooxidation of hydrocarbons,” Atmos. Environ. 37 (24), 3413–3424 (2003).

    Article  Google Scholar 

  18. A. Ito, S. Sillman, and J. E. Penner, “Effects of additional non-methane volatile organic compounds, organic nitrates and direct emissions of oxygenated organic species on global tropospheric chemistry,” J. Geophys. Res. 112, D06309 (2007). https://doi.org/10.1029/2005JD006556

    Article  Google Scholar 

  19. M. E. Jenkin, S. M. Saunders, and M. J. Pilling, “The tropospheric degradation of volatile organic compounds: A protocol for mechanism development,” Atmos. Environ. 31 (1), 81–104 (1997).

    Article  Google Scholar 

  20. A. Virkkula, R. van Dingenen, F. Raes, and J. Hjorth, “Hygroscopic properties of aerosol formed by oxidation of limonene, α-pinene and β-pinene,” J. Geophys. Res. 104, 3569–3579 (1999).

    Article  Google Scholar 

  21. D. R. Cocker, S. L. Clegg, R. C. Flagan, and J. H. Seinfeld, “The effect of water on gas–particle partitioning of secondary organic aerosol. Part I: α-pinene/ozone system,” Atmos. Environ. 35 (35), 6049–6072 (2001).

    Article  Google Scholar 

  22. S. R. Utembe, M. E. Jenkin, R. G. Derwent, A. C. Lewis, J. R. Hopkins, and J. F. Hamilton, “Modelling the ambient distribution of organic compounds during the August 2003 ozone episode in the southern UK,” Faraday Discuss. 130, 311–326 (2005).

    Article  Google Scholar 

  23. M. Jang, N. M. Czoschke, S. Lee, and R. M. Kamens, “Heterogeneous atmospheric aerosol production by acid catalyzed particle-phase reactions,” Science 298, 814–817 (2002).

    Article  Google Scholar 

  24. J. H. Kroll, A. W. H. Chan, N. L. Ng, R. C. Flagan, and J. H. Seinfeld, “Reactions of semivolatile organics and their effects on secondary organic aerosol formation,” Environ. Sci. Technol. 41 (10), 3545–3550 (2007).

    Article  Google Scholar 

  25. S. Gao, N. L. Ng, M. Keywood, et al., “Particle phase acidity and oligomer formation in secondary organic aerosol,” Environ. Sci. Technol. 38 (24), 6582–6589 (2004).

    Article  Google Scholar 

  26. R. Zhao, C. M. Kenseth, Y. Huang, et al., “Rapid aqueous-phase hydrolysis of ester hydroperoxides arising from Criegee intermediates and organic acids,” J. Phys. Chem. A 122 (23), 5190–5201 (2018). https://doi.org/10.1021/acs.jpca.8b02195

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-05-50007 (Mikromir), as well as by State Tasks of the Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences and the Institute of Energy Problems of Chemical Physics, Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Yermakov or A. E. Aloyan.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermakov, A.N., Aloyan, A.E. & Arutyunyan, V.O. Modeling the Composition of Organic Aerosol in the Atmosphere. Izv. Atmos. Ocean. Phys. 57, 390–396 (2021). https://doi.org/10.1134/S0001433821030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821030038

Keywords:

Navigation