Abstract
Results obtained from ground-based high spectral resolution measurements of solar IR radiation absorption spectra are analyzed. These measurements have been carried out in Peterhof for different ranges of electromagnetic waves to determine the atmospheric total content of СО2 and its contents in the two atmospheric layers—the troposphere and stratosphere. Two spectral schemes to measure solar spectra within ranges of 2600 and 3100–3300 cm–1 are chosen based on an analysis of errors in measurements using different spectral schemes and comparisons with independent measurements and simulation data. Time variations in the tropospheric and stratospheric contents of СО2 for the 2018–2019 period are studied. Within this period, the ХСО2 values in the troposphere mostly exceed those in the stratosphere, and such an excess reached 5–10 ppm. The reverse situation is observed in summer and early fall, when the ХСО2 values in the stratosphere exceed those in the troposphere, which is associated with photosynthesis processes (absorption of СО2 by vegetation in the troposphere). Comparisons of ground-based measurement results with CAMS simulation data and satellite OCO-2 and ACE data show a good agreement for the total content of СО2 and its tropospheric and stratospheric contents. The errors are within 1% if systematic discrepancies are excluded.
Similar content being viewed by others
REFERENCES
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F. -M. Breon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.‑D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner, “Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system,” Biogeosciences 11, 3547–3602 (2014). https://doi.org/10.5194/bg-11-3547-2014
TCCON (Total Carbon Column Observing Network). http://www.tccon.caltech.edu/.
NDACC (Network for the Detection of Atmospheric Composition Change). http://www.ndaccdemo.org/.
Yu. M. Timofeev, Study of the Earth’s Atmosphere by the Transparency Method (Nauka, St. Petersburg, 2016) [in Russian].
N. S. Pougatchev, B. J. Connor, and C. P. Rinsland, “Infrared measurements of the ozone vertical distribution above Kitt Peak,” J. Geophys. Res. 100 (D8), 16689–16697 (1995). https://doi.org/10.1029/95JD01296
Ya. A. Virolainen and Yu. M. Timofeev, “Determination of the elements of the vertical structure of ozone content from ground-based measurements of solar radiation with high spectral resolution,” Issled. Zemli Kosmosa, No. 3, 3–10 (2008).
M. Schneider, T. Blumenstock, M. T. Chipperfield, F. Hase, W. Kouker, T. Reddmann, R. Ruhnke, E. Cuevas, and H. Fischer, “Subtropical trace gas profiles determined by ground-based FTIR spectroscopy at Izaña (28°N, 16°W): Five-year record, error analysis, and comparison with 3-D CTMs,” Atmos. Chem. Phys. 5, 153–167 (2005). https://www.atmos-chem-phys.org/ acp/5/153.
V. Velazco, J. Notholt, T. Warneke, M. Lawrence, H. Bremer, J. Drummond, A. Schulz, J. Krieg, and O. Schrems, “Latitude and altitude variability of carbon monoxide in the Atlantic detected from ship-borne Fourier transform spectrometry, model, and satellite data,” J. Geophys. Res. 110, D09306 (2005). https://doi.org/10.1029/2004JD005351
P. Duchatelet, E. Mahieu, R. Ruhnke, W. Feng, M. Chipperfield, P. Demoulin, P. Bernath, C. D. Boone, K. A. Walker, C. Servais, and O. Flock, “An approach to retrieve information on the carbonyl fluoride (COF2) vertical distributions above Jungfraujoch by FTIR multi-spectrum multi-window fitting,” Atmos. Chem. Phys. 9, 9027–9042 (2009). https://www.atmos-chem-phys.net/9/9027/2009.
L. Kuai, D. Wunch, R.-L. Shia, B. Connor, C. Miller, and Y. Yung, “Vertically constrained CO2 retrievals from TCCON measurements,” J. Quant. Spectrosc. Radiat. Transfer 113 (14), 1753–1761 (2012).
C. Senten, M. de Mazière, G. Vanhaelewyn, and C. Vigourou, “Information operator approach applied to the retrieval of the vertical distribution of atmospheric constituents from ground-based high-resolution FTIR measurements,” Atmos. Meas. Tech. 5, 161–180 (2012). https://www.atmos-meas-tech.net/5/161/2012/. https://doi.org/10.5194/amt-5-161-2012
B. J. Connor, V. Sherlock, G. Toon, D. Wunch, and P. O. Wennber, “GFIT2: An experimental algorithm for vertical profile retrieval from near-IR spectra,” Atmos. Meas. Tech. 9, 3513–3525 (2016). https://www.atmos-meas-tech.net/9/3513/2016/. https://doi.org/10.5194/amt-9-3513-2016
M.-T. el Kattar, F. Auriol, and H. Herbin, “Instrumental characteristics and potential greenhouse gas measurement capabilities of the compact high-spectral-resolution infrared spectrometer: CHRIS,” Atmos. Meas. Tech. 13, 3769–3786 (2020). https://doi.org/10.5194/amt-13-3769-2020
M. Zhou, B. Langerock, M. K. Sha, N. Kumps, C. Hermans, C. Petri, T. Warneke, H. Chen, J.‑M. Metzger, R. Kivi, P. Heikkinen, M. Ramonet, and M. de Mazière, “Retrieval of atmospheric CH4 vertical information from ground-based FTS near-infrared spectra,” Atmos. Meas. Tech. 12, 6125–6141 (2019). https://doi.org/10.5194/amt-12-6125-2019
Yu. M. Timofeev, N. N. Filippov, and A. V. Poberovskii, “Analysis of the information content and vertical resolution of the ground-based spectroscopic IR method for the CO2 vertical structure retrieval,” Atmos. Oceanic Opt. 34 (2), 87–92 (2021).
NDACC Infrared Working Group. https://www2. acom.ucar.edu/irwg/links.
Yu. M. Timofeyev, M. V. Makarova, Ya. A. Virolainen, I. A. Berezin, A. V. Polyakov, A. V. Poberovsky, and S. Ch. Foka, “Analysis of satellite and ground-based measurements of CO2 total content near Saint-Petersburg, Russia,” in European Geosciences Union General Assembly (EGU, Vienna, 2018).
M. Makarova, Ya. Virolainen, A. Polyakov, A. Poberovskiy, Yu. Timofeyev, and H. Imhasin, St. Petersburg site report (2018-2019. https://www.acom.ucar.edu/ i-rwg/IRWG_2019_posters/ (Cited January 25, 2021).
Yu. Timofeyev, Ya. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, “Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia),” J. Mol. Spectrosc. 323, 2–14 (2016). https://doi.org/10.1016/j.jms.2015.12.007
Ya. A. Virolainen, “Methodical aspects of the determination of carbon dioxide content in the atmosphere using IR-Fourier spectrometry,” J. Appl. Spectrosc. 85 (3), 462–469 (2018).https://doi.org/10.1007/s10812-018-0673-x
Yu. M. Timofeyev, I. A. Berezin, Ya. A. Virolainen, M. V. Makarova, A. V. Polyakov, A. V. Poberovsky, N. N. Filippov, and S. Ch. Foka, “Spatial–temporal CO2 variations near St. Petersburg based on satellite and ground-based measurements,” Izv., Atmos. Ocean. Phys. 55 (1), 59–64 (2019). https://doi.org/10.1134/S0001433819010109
F. Chevallier, Documentation of the CO2 flux service. Description of the CO2 inversion production chain 2019_version 1.0. ECMWF COPERNICUS report. Ref.: CAMS73_2018SC1_D5.2.1-2019_201904_documentation CO2_v1, 15 pp. (2019).
M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. M. Krekov, A. V. Fofonov, S. V. Babchenko, G. Inoue, T. Machida, Sh. Maksyutov, M. Sasakawa, and S. Ko, “Dynamics of the vertical distribution of greenhouse gases in the atmosphere,” Opt. Atmos. Okeana 25 (12), 1051–1061 (2012).
M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, T. Machida, Ph. Nedelec, J.-D. Paris, and A. V. Fofonov, “Comparison of satellite and aircraft measurements of gas composition in the troposphere above the south of West Siberia,” Opt. Atmos. Okeana 26 (9), 773–782 (2013).
P. Y. Foucher, A. Chedin, R. Armante, C. Boone, C. Crevoisier, and P. Bernath, “Carbon dioxide atmospheric vertical profiles retrieved from space observation using ACE-FTS solar occultation instrument,” Atmos. Chem. Phys. 11, 2455–2470 (2011). https://www. atmos-chem-phys.net/11/2455/2011/. https://doi.org/10.5194/acp-11-2455-2011
C. D. Boone, P. F. Bernath, D. Cok, S. C. Jones, and J. Steffen, “Version 4 retrievals for the atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS) and imagers,” J. Quant. Spectrosc. Radiat. Transfer 247, 106939 (2020). https://doi.org/10.1016/j.jqsrt.2020.106939
Funding
This work was supported by the Russian Foundation for Basic Research (project no. 20-05-00627). The experimental data were obtained using the equipment of the Geomodel Research Center at St. Petersburg State University. The ACE satellite measurements were funded by the Canadian Space Agency.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by B. Dribinskaya
Rights and permissions
About this article
Cite this article
Timofeyev, Y.M., Nerobelov, G.M., Poberovskii, A.V. et al. Determining Both Tropospheric and Stratospheric СО2 Contents Using a Ground-Based IR Spectroscopic Method. Izv. Atmos. Ocean. Phys. 57, 286–296 (2021). https://doi.org/10.1134/S0001433821020110
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0001433821020110