Skip to main content
Log in

Determining Both Tropospheric and Stratospheric СО2 Contents Using a Ground-Based IR Spectroscopic Method

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Results obtained from ground-based high spectral resolution measurements of solar IR radiation absorption spectra are analyzed. These measurements have been carried out in Peterhof for different ranges of electromagnetic waves to determine the atmospheric total content of СО2 and its contents in the two atmospheric layers—the troposphere and stratosphere. Two spectral schemes to measure solar spectra within ranges of 2600 and 3100–3300 cm–1 are chosen based on an analysis of errors in measurements using different spectral schemes and comparisons with independent measurements and simulation data. Time variations in the tropospheric and stratospheric contents of СО2 for the 2018–2019 period are studied. Within this period, the ХСО2 values in the troposphere mostly exceed those in the stratosphere, and such an excess reached 5–10 ppm. The reverse situation is observed in summer and early fall, when the ХСО2 values in the stratosphere exceed those in the troposphere, which is associated with photosynthesis processes (absorption of СО2 by vegetation in the troposphere). Comparisons of ground-based measurement results with CAMS simulation data and satellite OCO-2 and ACE data show a good agreement for the total content of СО2 and its tropospheric and stratospheric contents. The errors are within 1% if systematic discrepancies are excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F. -M. Breon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.‑D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner, “Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system,” Biogeosciences 11, 3547–3602 (2014). https://doi.org/10.5194/bg-11-3547-2014

    Article  Google Scholar 

  2. TCCON (Total Carbon Column Observing Network). http://www.tccon.caltech.edu/.

  3. NDACC (Network for the Detection of Atmospheric Composition Change). http://www.ndaccdemo.org/.

  4. Yu. M. Timofeev, Study of the Earth’s Atmosphere by the Transparency Method (Nauka, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  5. N. S. Pougatchev, B. J. Connor, and C. P. Rinsland, “Infrared measurements of the ozone vertical distribution above Kitt Peak,” J. Geophys. Res. 100 (D8), 16689–16697 (1995). https://doi.org/10.1029/95JD01296

    Article  Google Scholar 

  6. Ya. A. Virolainen and Yu. M. Timofeev, “Determination of the elements of the vertical structure of ozone content from ground-based measurements of solar radiation with high spectral resolution,” Issled. Zemli Kosmosa, No. 3, 3–10 (2008).

    Google Scholar 

  7. M. Schneider, T. Blumenstock, M. T. Chipperfield, F. Hase, W. Kouker, T. Reddmann, R. Ruhnke, E. Cuevas, and H. Fischer, “Subtropical trace gas profiles determined by ground-based FTIR spectroscopy at Izaña (28°N, 16°W): Five-year record, error analysis, and comparison with 3-D CTMs,” Atmos. Chem. Phys. 5, 153–167 (2005). https://www.atmos-chem-phys.org/ acp/5/153.

    Article  Google Scholar 

  8. V. Velazco, J. Notholt, T. Warneke, M. Lawrence, H. Bremer, J. Drummond, A. Schulz, J. Krieg, and O. Schrems, “Latitude and altitude variability of carbon monoxide in the Atlantic detected from ship-borne Fourier transform spectrometry, model, and satellite data,” J. Geophys. Res. 110, D09306 (2005). https://doi.org/10.1029/2004JD005351

    Article  Google Scholar 

  9. P. Duchatelet, E. Mahieu, R. Ruhnke, W. Feng, M. Chipperfield, P. Demoulin, P. Bernath, C. D. Boone, K. A. Walker, C. Servais, and O. Flock, “An approach to retrieve information on the carbonyl fluoride (COF2) vertical distributions above Jungfraujoch by FTIR multi-spectrum multi-window fitting,” Atmos. Chem. Phys. 9, 9027–9042 (2009). https://www.atmos-chem-phys.net/9/9027/2009.

    Article  Google Scholar 

  10. L. Kuai, D. Wunch, R.-L. Shia, B. Connor, C. Miller, and Y. Yung, “Vertically constrained CO2 retrievals from TCCON measurements,” J. Quant. Spectrosc. Radiat. Transfer 113 (14), 1753–1761 (2012).

    Article  Google Scholar 

  11. C. Senten, M. de Mazière, G. Vanhaelewyn, and C. Vigourou, “Information operator approach applied to the retrieval of the vertical distribution of atmospheric constituents from ground-based high-resolution FTIR measurements,” Atmos. Meas. Tech. 5, 161–180 (2012). https://www.atmos-meas-tech.net/5/161/2012/. https://doi.org/10.5194/amt-5-161-2012

    Article  Google Scholar 

  12. B. J. Connor, V. Sherlock, G. Toon, D. Wunch, and P. O. Wennber, “GFIT2: An experimental algorithm for vertical profile retrieval from near-IR spectra,” Atmos. Meas. Tech. 9, 3513–3525 (2016). https://www.atmos-meas-tech.net/9/3513/2016/. https://doi.org/10.5194/amt-9-3513-2016

    Article  Google Scholar 

  13. M.-T. el Kattar, F. Auriol, and H. Herbin, “Instrumental characteristics and potential greenhouse gas measurement capabilities of the compact high-spectral-resolution infrared spectrometer: CHRIS,” Atmos. Meas. Tech. 13, 3769–3786 (2020). https://doi.org/10.5194/amt-13-3769-2020

    Article  Google Scholar 

  14. M. Zhou, B. Langerock, M. K. Sha, N. Kumps, C. Hermans, C. Petri, T. Warneke, H. Chen, J.‑M. Metzger, R. Kivi, P. Heikkinen, M. Ramonet, and M. de Mazière, “Retrieval of atmospheric CH4 vertical information from ground-based FTS near-infrared spectra,” Atmos. Meas. Tech. 12, 6125–6141 (2019). https://doi.org/10.5194/amt-12-6125-2019

    Article  Google Scholar 

  15. Yu. M. Timofeev, N. N. Filippov, and A. V. Poberovskii, “Analysis of the information content and vertical resolution of the ground-based spectroscopic IR method for the CO2 vertical structure retrieval,” Atmos. Oceanic Opt. 34 (2), 87–92 (2021).

    Article  Google Scholar 

  16. NDACC Infrared Working Group. https://www2. acom.ucar.edu/irwg/links.

  17. Yu. M. Timofeyev, M. V. Makarova, Ya. A. Virolainen, I. A. Berezin, A. V. Polyakov, A. V. Poberovsky, and S. Ch. Foka, “Analysis of satellite and ground-based measurements of CO2 total content near Saint-Petersburg, Russia,” in European Geosciences Union General Assembly (EGU, Vienna, 2018).

    Google Scholar 

  18. M. Makarova, Ya. Virolainen, A. Polyakov, A. Poberovskiy, Yu. Timofeyev, and H. Imhasin, St. Petersburg site report (2018-2019. https://www.acom.ucar.edu/ i-rwg/IRWG_2019_posters/ (Cited January 25, 2021).

  19. Yu. Timofeyev, Ya. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, “Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia),” J. Mol. Spectrosc. 323, 2–14 (2016). https://doi.org/10.1016/j.jms.2015.12.007

    Article  Google Scholar 

  20. Ya. A. Virolainen, “Methodical aspects of the determination of carbon dioxide content in the atmosphere using IR-Fourier spectrometry,” J. Appl. Spectrosc. 85 (3), 462–469 (2018).https://doi.org/10.1007/s10812-018-0673-x

    Article  Google Scholar 

  21. Yu. M. Timofeyev, I. A. Berezin, Ya. A. Virolainen, M. V. Makarova, A. V. Polyakov, A. V. Poberovsky, N. N. Filippov, and S. Ch. Foka, “Spatial–temporal CO2 variations near St. Petersburg based on satellite and ground-based measurements,” Izv., Atmos. Ocean. Phys. 55 (1), 59–64 (2019). https://doi.org/10.1134/S0001433819010109

    Article  Google Scholar 

  22. F. Chevallier, Documentation of the CO2 flux service. Description of the CO2 inversion production chain 2019_version 1.0. ECMWF COPERNICUS report. Ref.: CAMS73_2018SC1_D5.2.1-2019_201904_documentation CO2_v1, 15 pp. (2019).

  23. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. M. Krekov, A. V. Fofonov, S. V. Babchenko, G. Inoue, T. Machida, Sh. Maksyutov, M. Sasakawa, and S. Ko, “Dynamics of the vertical distribution of greenhouse gases in the atmosphere,” Opt. Atmos. Okeana 25 (12), 1051–1061 (2012).

    Google Scholar 

  24. M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, T. Machida, Ph. Nedelec, J.-D. Paris, and A. V. Fofonov, “Comparison of satellite and aircraft measurements of gas composition in the troposphere above the south of West Siberia,” Opt. Atmos. Okeana 26 (9), 773–782 (2013).

    Google Scholar 

  25. P. Y. Foucher, A. Chedin, R. Armante, C. Boone, C. Crevoisier, and P. Bernath, “Carbon dioxide atmospheric vertical profiles retrieved from space observation using ACE-FTS solar occultation instrument,” Atmos. Chem. Phys. 11, 2455–2470 (2011). https://www. atmos-chem-phys.net/11/2455/2011/. https://doi.org/10.5194/acp-11-2455-2011

    Article  Google Scholar 

  26. C. D. Boone, P. F. Bernath, D. Cok, S. C. Jones, and J. Steffen, “Version 4 retrievals for the atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS) and imagers,” J. Quant. Spectrosc. Radiat. Transfer 247, 106939 (2020). https://doi.org/10.1016/j.jqsrt.2020.106939

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-05-00627). The experimental data were obtained using the equipment of the Geomodel Research Center at St. Petersburg State University. The ACE satellite measurements were funded by the Canadian Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Timofeyev.

Additional information

Translated by B. Dribinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeyev, Y.M., Nerobelov, G.M., Poberovskii, A.V. et al. Determining Both Tropospheric and Stratospheric СО2 Contents Using a Ground-Based IR Spectroscopic Method. Izv. Atmos. Ocean. Phys. 57, 286–296 (2021). https://doi.org/10.1134/S0001433821020110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821020110

Keywords:

Navigation