Skip to main content
Log in

Helicity and Turbulence in the Atmospheric Boundary Layer

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Helicity is inherent in many circulating motions and structures in the atmospheric boundary layer (ABL), where it is continuously reproduced due to the combined action of the Earth’s rotation and friction, which also is closely related to the phenomena of the inverse cascade and large-scale restructuring of flows. The helicity factor should be correctly considered during the construction of atmosphere models, and, accordingly, the knowledge of the helicity distribution in the ABL and its relation to dynamic atmospheric processes is required. In this study, the helicity of the circulation structures of various spatial and temporal scales in the ABL is determined from an analysis of field measurement data. A qualitative and quantitative comparison with the observed values is carried out on the basis of results of numerical simulations using the quasi-two-dimensional model and a WRF-ARW mesoscale atmospheric nonhydrostatic model, in particular, WRF-LES. A good agreement with the observed spatial distributions of circulating motions is obtained. A link between the turbulent characteristics and helicity of the structures under study is shown. The helicity estimates for circulation structures of various scales in the ABL and in the free atmosphere are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. H. K. Moffatt and A. Tsinober, “Helicity in laminar and turbulent flow,” Annu. Rev. Fluid Mech. 24 (1), 281–312 (1992).

    Article  Google Scholar 

  2. E. B. Gledzer and O. G. Chkhetiani, “Inverse energy cascade in developed turbulence at the breaking of the symmetry of helical modes,” JETP Lett. 102 (7), 465–472 (2015).

    Article  Google Scholar 

  3. O. G. Chkhetiani and E. B. Gledzer, “Helical turbulence with small-scale energy and helicity sources and external intermediate scale noises as the origin of large scale generation,” Phys. A: Stat. Mech. Appl. 486, 416–433 (2017).

    Article  Google Scholar 

  4. O. G. Chkhetiani, M. V. Kurgansky, and N. V. Vazaeva, “Turbulent helicity in the atmospheric boundary layer,” Boundary Layer Meteorol. 168, 361–385 (2018).

    Article  Google Scholar 

  5. S. H. Chou and M. P. Ferguson, “Heat fluxes and roll circulations over the western Gulf Stream during an intense cold-air outbreak,” Boundary Layer Meteorol. 55 (3), 255–281 (1991).

    Article  Google Scholar 

  6. R. Cieszelski, “Studies on turbulence parametrizations for flows with helicity,” Izv., Atmos. Ocean. Phys. 35 (2), 157–170 (1999).

    Google Scholar 

  7. D. Etling, “Some aspects of helicity in atmospheric flows,” Beitr. Phys. Atmos. 58 (1), 88–100 (1985).

    Google Scholar 

  8. Zh. Tan and R. Wu, “Helicity dynamics of atmospheric flow,” Adv. Atmos. Sci. 11 (2), 175–188 (1994).

    Article  Google Scholar 

  9. D. Etling and R. A. Brown, “Roll vortices in the planetary boundary layer: A review,” Boundary Layer Meteorol. 65 (3), 215–248 (1993).

    Article  Google Scholar 

  10. L. A. Mikhailova and A. E. Ordanovich, “Simulation of two-dimensional ordered vortices in the atmospheric boundary layer,” Meteorol. Gidrol., No. 11, 29–42 (1988).

  11. T. M. Weckwerth, J. W. Wilson, R. M. Wakimoto, and N. A. Crook, “Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics,” Mon. Weather Rev. 125 (4), 505–526 (1997).

    Article  Google Scholar 

  12. G. S. Young, D. A. R. Kristovich, M. R. Hjelmfelt, and R. C. Foster, “Supplement to rolls, streets, waves, and more,” Bull. Am. Meteorol. Soc. 83 (7), 1001–1001 (2002).

    Article  Google Scholar 

  13. R. Foster, “Signature of large aspect ratio roll vortices in synthetic aperture radar images of tropical cyclones,” Oceanography 26 (2), 58–67 (2013).

    Article  Google Scholar 

  14. N. V. Vazaeva, O. G. Chkhetiani, and L. O. Maksimenkov, “Organized roll circulation and transport of mineral aerosols in the atmospheric boundary layer,” Izv., Atmos. Ocean. Phys. 55 (2), 152–166 (2019).

    Article  Google Scholar 

  15. S. H. Chou and D. Atlas, “Satellite estimates of ocean–air heat fluxes during cold air outbreaks,” Mon. Weather Rev. 110 (10), 1434–1450 (1982).

    Article  Google Scholar 

  16. P. F. Hein and R. A. Brown, “Observations of longitudinal roll vortices during Arctic cold air outbreaks over open water,” Boundary Layer Meteorol. 45 (1–2), 177–199 (1988).

    Article  Google Scholar 

  17. B. Brümmer, “Roll and cell convection in wintertime Arctic cold-air outbreaks,” J. Atmos. Sci. 56 (15), 2613–2636 (1999).

    Article  Google Scholar 

  18. R. A. Brown, “Longitudinal instabilities and secondary flows in the planetary boundary layer,” Rev. Geophys.: Space Phys. 18 (3), 683–697 (1980).

    Article  Google Scholar 

  19. D. J. Stensrud and H. N. Shirer, “Development of boundary layer rolls from dynamic instabilities,” J. Atmos. Sci. 45 (6), 1007–1019 (1988).

    Article  Google Scholar 

  20. T. Dubos, C. Barthlott, and P. Drobinski, “Emergence and secondary instability of Ekman layer rolls,” J. Atmos. Sci. 65 (7), 2326–2342 (2008).

    Article  Google Scholar 

  21. P. Drobinski, P. Carlotti, J.-L. Redelsperger, R. Banta, V. Masson, and R. Newsom, “Numerical and experimental investigation of the neutral atmospheric surface layer,” J. Atmos. Sci. 64, 137–156 (2007).

    Article  Google Scholar 

  22. N. V. Vazaeva, O. G. Chkhetiani, L. V. Shestakova, and L. O. Maksimenkov, “Nonlinear development of Ekman layer structures,” Vychisl. Mekh. Sploshnykh Sred 10 (2), 197–211 (2017).

    Google Scholar 

  23. P. S. Anderson, “Fine-scale structure observed in a stable atmospheric boundary layer by sodar and kite-borne tethersonde,” Boundary Layer Meteorol. 107 (2), 323–351 (2003).

    Article  Google Scholar 

  24. P. Mason and D. Thomson, “Large-eddy simulations of the neutral-static-stability planetary boundary layer,” Q. J. R. Meteorol. Soc. 113 (476), 413–443 (1987).

    Article  Google Scholar 

  25. C.-L. Lin, J. McWilliams, C.-H. Moeng, and P. Sullivan, “Coherent structures and dynamics in a neutrally stratified planetary boundary layer flow,” Phys. Fluids 8, 2626–2639 (1996).

    Article  Google Scholar 

  26. N. L. Byzova, V. N. Ivanov, and M. K. Matskevich, “Measurement of the vorticity components within the lower 300-m atmospheric layer,” Izv., Atmos. Ocean. Phys. 32 (3), 298–302 (1996).

    Google Scholar 

  27. E. A. Shishov, B. M. Koprov, and V. M. Koprov, “Statistical parameters of the spatiotemporal variability of the wind direction in the surface layer,” Izv., Atmos. Ocean. Phys. 53 (1), 19–23 (2017).

    Article  Google Scholar 

  28. K. Hibino, H. Ishikawa, and K. Ishioka, “Effect of a capping inversion on the stability of an Ekman boundary layer,” J. Meteorol. Soc. Jpn., Ser. II 90 (2), 311–319 (2012).

    Google Scholar 

  29. R. C. Foster, “Structure and energetics of optimal Ekman layer perturbations,” J. Fluid Mech. 333, 97–123 (1997).

    Article  Google Scholar 

  30. O. G. Chkhetiani and N. V. Vazaeva, “On algebraic perturbations in the atmospheric boundary layer,” Izv., Atmos. Ocean. Phys. 55 (5), 432–445 (2019).

    Article  Google Scholar 

  31. W. C. Skamarock, J. B. Klemp, J. Dudhia, et al., A Description of the Advanced Research WRF Version 3, NCAR Tech. Note-475+STR (NCAR, Boulder, Colo. 2008).

    Google Scholar 

  32. N. F. Veltishchev and V. D. Zhupanov, “Numerical weather forecast using community nonhydrostatic models WRF-ARW and WRF-NMM,” in 80 Years of the Hydrometeorological Center of Russia (Triada, Moscow, 2010), pp. 94–135 [in Russian].

    Google Scholar 

  33. G. N. Coleman, J. H. Ferziger, and P. R. Spalart, “A numerical study of the turbulent Ekman layer,” J. Fluid Mech. 213, 313–348 (1990).

    Article  Google Scholar 

  34. G. N. Coleman, J. H. Ferziger, and P. R. Spalart, “A numerical study of the convective boundary layer,” Boundary Layer Meteorol. 70 (3), 247–272 (1994).

    Article  Google Scholar 

  35. E. Deusebio and E. Lindborg, “Helicity in the Ekman boundary layer,” J. Fluid Mech. 755, 654–671 (2014).

    Article  Google Scholar 

  36. C. H. Moeng, J. Dudhia, J. Klemp, and P. Sullivan, “Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model,” Mon. Weather Rev. 135 (6), 2295–2311 (2007).

    Article  Google Scholar 

  37. J. Ito, H. Niino, and M. Nakanishi, “Large eddy simulation on dust suspension in a convective mixed layer,” Sci. Online Lett. Atmos. 6 (1), 133–136 (2010).

    Google Scholar 

  38. J. Ching, R. Rotunno, M. LeMone, et al., “Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models,” Mon. Weather Rev. 142 (9), 3284–3302 (2014).

    Article  Google Scholar 

  39. Y. Zhang, R. Hu, and X. Zheng, “Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study,” Phys. Fluids 3 (4), 046601 (2018).

    Article  Google Scholar 

  40. S. T. Salesky, M. Chamecki, and E. Bou-Zeid, “On the nature of the transition between roll and cellular organization in the convective boundary layer,” Boundary Layer Meteorol. 163 (1), 41–68 (2017).

    Article  Google Scholar 

  41. M. A. Kallistratova, R. D. Kouznetsov, and I. V. Petenko, “Implementation of the idea of A. M. Obukhov on ground-based sounding of the lower troposphere by acoustic and electromagnetic waves,” in Turbulence, Dynamics of the Atmosphere and Climate, Ed. by G. S. Golitsyn, I. I. Mokhov, S. N. Kulichkov (GEOS, Moscow, 2014), pp. 593–620 [in Russian].

    Google Scholar 

  42. G. H. Crescenti, “A look back on two decades of Doppler sodar comparison studies,” Bull. Am. Meteorol. Soc. 78 (4), C. 651–673 (1997).

  43. R. L. Coulter and M. A. Kallistratova, “The role of acoustic sounding in a high technology era,” Meteorol. Atmos. Phys. 71 (1–2), 3–13 (1999).

    Article  Google Scholar 

  44. S. Emeis, “Basic principles of surface-based remote sensing,” in Surface-Based Remote Sensing of the Atmospheric Boundary Layer (Springer, 2011), Chap. 3, pp. 33–71.

    Book  Google Scholar 

  45. P. S. Anderson, R. S. Ladkin, and I. A. Renfrew, “An autonomous Doppler sodar wind profiling system,” J. Atmos. Oceanic Technol. 22 (9), 1309–1325 (2005).

    Article  Google Scholar 

  46. M. A. Kallistratova, R. D. Kouznetsov, V. F. Kramar, and D. D. Kuznetsov, “Profiles of vertical wind speed variances within nocturnal low-level jets observed with a sodar,” J. Atmos. Oceanic Technol. 30 (9), 1970–1977 (2013).

    Article  Google Scholar 

  47. I. G. Granberg, V. F. Kramar, R. D. Kouznetsov, O. G. Chkhetiani, M. A. Kallistratova, S. N. Kulichkov, M. S. Artamonova, D. D. Kuznetsov, V. G. Perepelkin, V. V. Perepelkin, and F. A. Pogarskii, “A study of the spatial structure of the atmospheric boundary layer with a Doppler–sodar network,” Izv., Atmos. Ocean. Phys. 45 (3), 541–548 (2009).

    Article  Google Scholar 

  48. R. D. Kouznetsov, “LATAN-3 sodar for investigation of the atmospheric boundary layer,” Opt. Atmos. Okeana 20 (8), 749–753 (2007).

    Google Scholar 

  49. R. D. Kouznetsov, “The multi-frequency sodar with high temporal resolution,” Meteorol. Z. 18 (2), 169–173 (2009).

    Article  Google Scholar 

  50. V. F. Kramar, O. G. Chkhetiani, N. V. Vazaeva, M. A. Kallistratova, R. D. Kuznetsov, S. N. Kulichkov, V. S. Lyulyukin, and D. D. Kouznetsov, “Sodar for studying the microstructure of the atmospheric surface layer,” in Turbulence, Dynamics of the Atmosphere and Climate. Proceedings of the International Conference Devoted to the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov (Fizmatkniga, Moscow 2018) pp. 238–249 [in Russian].

  51. A. Yagi, A. Inagaki, M. Kanda, C. Fujiwara, and Y. Fujiyoshi, “Nature of streaky structures observed with a Doppler lidar,” Boundary Layer Meteorol. 163 (1), 19–40 (2017).

    Article  Google Scholar 

  52. P. Doubrawa and D. Munoz-Esparza, “Simulating real atmospheric boundary layers at gray-zone resolutions: How do currently available turbulence parameterizations perform?,” Atmosphere 11 (4), 345 (2020).

    Article  Google Scholar 

  53. M. V. Kurgansky, “On the relationship between helicity and potential vorticity in a compressible rotating fluid,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 25 (12), 1326–1329 (1989).

    Google Scholar 

  54. N. V. Vazaeva, O. G. Chkhetiani, R. D. Kouznetsov, M. A. Kallistratova, V. F. Kramar, V. S. Lyulyukin, and D. D. Kuznetsov, “Estimating helicity in the atmospheric boundary layer from acoustic sounding data,” Izv., Atmos. Ocean. Phys. 53 (2), 174–186 (2017).

    Article  Google Scholar 

  55. B. M. Koprov, V. M. Koprov, V. M. Ponomarev, and O. G. Chkhetiani, “Experimental studies of turbulent helicity and its spectrum in the atmospheric boundary layer,” Dokl. Phys. 50 (8), 419–422 (2005).

    Article  Google Scholar 

  56. V. M. Bovsheverov, A. S. Gurvich, A. M. Kochetkov, and S. O. Lomadze, “Measurement of the frequency spectrum of small-scale circulation of velocity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 7 (4), 371–376 (1971).

    Google Scholar 

  57. B. M. Koprov, G. V. Azizyan, and V. V. Kalugin, “Spectra of velocity circulation in the surface layer of the atmosphere,” in Topics in Micrometeorology. A Festschrift for Arch Dyer (Springer, Dordrecht, 1988), pp. 137–143.

    Google Scholar 

  58. E. A. Novikov, “Vortex flow,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 8 (7), 459–462 (1972).

    Google Scholar 

  59. P. A. Vorontsov, Turbulence and Vertical Currents in the Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1966) [in Russian].

    Google Scholar 

  60. B. M. Koprov, V. M. Koprov, M. V. Kurgansky, and O. G. Chkhetiani, “Helicity and potential vorticity in surface turbulence,” Izv., Atmos. Ocean. Phys. 51 (6), 565–575 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to G.S. Golitsyn for taking an interest in the work and making constructive notes, as well as for his ongoing support of this study. We thank V.F. Kramar, R.D. Kouznetsov, V.S. Lyulyukin, D.A. Zaitseva, D.D. Kuznetsov, and E.A. Shishov for joint participation in field measurements and for furnishing experimental data. We would like to separately thank V.A. Bezverkhnii and L.O. Maksimenkov for continuous assistance and consultations on issues of data processing and simulation.

We would like to dedicate this work to the memory of Boris Mikhailovich Koprov. His great interest in studying the atmospheric boundary layer, unquenchable optimism, and accuracy and enthusiasm in performing experiments greatly contributed to the development of works on turbulence and helicity.

Funding

This research was supported by the Russian Foundation for Basic Research, project nos. 19-05-01008, 18-35-00600, and 17-05-01116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Vazaeva.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazaeva, N.V., Chkhetiani, O.G., Kurgansky, M.V. et al. Helicity and Turbulence in the Atmospheric Boundary Layer. Izv. Atmos. Ocean. Phys. 57, 29–46 (2021). https://doi.org/10.1134/S0001433821010126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821010126

Keywords:

Navigation