Skip to main content
Log in

Long-Term Tendencies of Carbon Monoxide in the Atmosphere of the Moscow Megapolis

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This paper presents the results of a comprehensive analysis of measurements of CO total content (CO TC) at stations of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS), in Moscow and Moscow oblast. Also CO in-situ data obtained from automated stations of the Mosecomonitoring network, satellite monitoring results and information on the parameters of the atmospheric boundary layer in Moscow and the surrounding regions are analyzed. The long-term variability of CO TC and meteorological parameters is investigated, the carbon monoxide accumulation characteristics in calm days in the atmospheric boundary layer are obtained. A decrease in the average annual values ​​of TC CO in 2000–2018 was found in Moscow (–2.56 ± 0.52%/year) and at the Zvenigorod Scientific Station (ZSS) (‒1.15 ± 0.37%/year). However, the rate of decrease in both sites is different in different seasons and periods. After about 2007–2008, the rate of CO TC reduction decreased at both sites. In 2008–2018, at the ZSS, an increase in CO TC was recorded in the summer and autumn months at a rate of about 0.7%/year. An increase in the wind speed in the atmospheric boundary layer of Moscow in different periods of 2000–2018 at a rate of 0.4–1.6%/year has been determined. At the same time, no statistically significant changes in wind speed were found in Kaluga oblast. The recurrence of calm days in Moscow in 2006–2017 decreased (–7.06 ± 3.96%/year) with a decrease in the anthropogenic part of the CO content in the same period (–6.72 ± 3.48%/year). The results indicate the influence of the climatic (meteorological) factor on air quality in Moscow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Climate Change 2013: Summary for Policymakers, The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, New York, 2013).

    Google Scholar 

  2. P. C. Novelli, K. A. Masarie, and P. M. Lang, “Distributions and recent changes in carbon monoxide in the lower troposphere,” J. Geophys. Res. 103 (19), 015–033 (1998).

  3. D. J. Jacob, Introduction to Atmospheric Chemistry (Princeton University Press, Princeton, N.J., 1999). http://acmg.seas.harvard.edu/people/faculty/djj/book/.

    Google Scholar 

  4. G. S. Golitsyn, E. I. Grechko, Wang Gengchen, Wang Pucai, A. V. Dzhola, A. S. Emilenko, V. M. Kopeikin, V. S. Rakitin, A. N. Safronov, and E. V. Fokeeva, “Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol,” Izv., Atmos. Ocean. Phys. 51 (1), 1–11 (2015).

    Article  Google Scholar 

  5. P. Wang, N. F. Elansky, Yu. M. Timofeev, G. Wang, G. S. Golitsyn, M. V. Makarova, V. S. Rakitin, Yu. A. Stabkin, A. I. Skorokhod, E. I. Grechko, E. V. Fokeeva, and A. N. Safronov, “Long-term trends of carbon monoxide total columnar amount in urban areas and background regions: Ground- and satellite-based spectroscopic measurements,” Adv. Atmos. Sci. 35 (7), 785–795 (2018).

    Article  Google Scholar 

  6. Yu. M. Timofeev, A. V. Polyakov, Ya. A. Virolainen, M. V. Makarova, D. V. Ionov, A. V. Poberovsky, and H. H. Imhasin," Estimates of trends of climatically important atmospheric gases near St. Petersburg," Izv., Atmos. Ocean. Phys. 56 (1), 79–84 (2020).

    Article  Google Scholar 

  7. M. V. Makarova, A. V. Poberovsky, and S. I. Osipov, “Time variations of the total CO content in the atmosphere near St. Petersburg,” Izv., Atmos. Ocean. Phys. 47 (6), 739–746 (2011). https://doi.org/10.1134/S0001433811060090

    Article  Google Scholar 

  8. S. Ch. Foka, M. V. Makarova, A. V. Poberovskii, and Yu. M. Timofeev, “Temporal variations in SO2, CH4, and CO concentrations in the St. Petersburg suburb (Peterhof),” Opt. Atmos. Okeana 32 (10), 860–866 (2019).

    Google Scholar 

  9. N. F. Elansky, N. A. Ponomarev, and Ya. M. Verevkin, “Air quality and pollutant emissions in the Moscow megacity in 2005–2014,” Atmos. Environ. 175 (2), 54–64 (2018).

    Article  Google Scholar 

  10. E. Dlugokencky, A. Crotwell, K. Masarie, J. White, P. Lang, and M. Crotwell, “NOAA measurements of long-lived greenhouse gases,” in Asia-Pacific GAW Greenhouse Gases, Newsletter (KMA, 2013), vol. 4, pp. 6–9.

  11. M. de Mazière, A. M. Thompson, M. J. Kurylo, J. D. Wild, G. Bernhard, T. Blumenstock, G. Braathen, J. W. Hannigan, J. Lambert, T. Leblanc, T. J. McGee, G. Nedoluha, I. Petropavlovskikh, G. Seckmeyer, P. Simon, W. Steinbrecht, and S. Strahan, “The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives,” Atmos. Chem. Phys. 18, 4935–4964 (2018).

    Article  Google Scholar 

  12. Z. Jiang, J. R. Worden, H. Worden, M. Deeter, D. B. A. Jones, A. F. Arellano, and D. K. Henze, “A fifteen year record of CO emissions constrained by MOPITT CO observations,” Atmos. Chem. Phys. 17, 4565–4583 (2017). https://doi.org/10.5194/acp-17-4565-2017

    Article  Google Scholar 

  13. Y. Yin, F. Chevallier, P. Ciais, G. Broquet, A. Fortems-Cheiney, I. Pison, and M. Saunois, “Decadal trends in global CO emissions as seen by MOPITT,” Atmos. Chem. Phys 15, 13433–13451 (2015). https://doi.org/10.5194/acp-15-13433-2015

    Article  Google Scholar 

  14. M. Krol, W. Peters, P. Hooghiemstra, M. George, C. Clerbaux, D. Hurtmans, D. McInerney, F. Sedano, P. Bergamaschi, M. El Hajj, W. Kaiser, D. Fisher, V. Yershov, and J.-P. Müller, “How much CO was emitted by the 2010 fires around Moscow?,” Atmos. Chem. Phys. 13, 4737–4747 (2013).

    Article  Google Scholar 

  15. A. N. Safronov, E. V. Fokeeva, V. S. Rakitin, E. I. Grechko, and R. A. Shumskii, “Severe wildfires near Moscow, Russia, in 2010: Modeling of carbon monoxide pollution and comparisons with observations,” Remote Sens., No. 7, 395–429 (2015). https://doi.org/10.3390/rs70100395

  16. D. Ghosh, S. Basu, A. K. Ball, and U. Sarkar, “Spatio-temporal variability of CO over the Eastern Indo-Gangetic Plain (IGP) and in parts of South-East Asia: A MERRA-2-based study,” Air Qual. Atmos. Health 12, 1153–1167 (2019). https://doi.org/10.1007/s11869-019-00728-2

    Article  Google Scholar 

  17. N. A. Ponomarev, N. F. Elansky, A. A. Kirsanov, O. V. Postylyakov, A. N. Borovski, and Y. M. Verevkin, “Application of atmospheric chemical transport models to validation of pollutant emissions in Moscow,” Atmos. Oceanic Opt. 33 (4), 362–371 (2020).

    Article  Google Scholar 

  18. V. S. Rakitin, N. F. Elansky, P. Wang, G. Wang, N. V. Pankratova, Yu. A. Shtabkin, A. I. Skorokhod, A. N. Safronov, M. V. Makarova, and E. I. Grechko, “Changes in trends of atmospheric composition over urban and background regions of Eurasia: Estimates based on spectroscopic observations,” Geogr. Environ. Sustainability 11 (2), 84–96 (2018).

    Article  Google Scholar 

  19. V. S. Rakitin, E. V. Fokeeva, E. I. Grechko, A. V. Dzhola, and R. D. Kuznetsov, “Variations of the total content of carbon monoxide over Moscow megapolis,” 47 (1), 59–66 (2011).

  20. L. N. Yurganov, V. Rakitin, A. Dzhola, T. August, E. Fokeeva, M. George, G. Gorchakov, E. Grechko, S. Hannon, A. Karpov, L. Ott, E. Semutnikova, R. Shumsky, and L. Strow, “Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top–down estimates based on thermal IR satellite data,” Atmos. Chem. Phys. 11, 7925–7942 (2011).

    Article  Google Scholar 

  21. N. F. Elansky, A. V. Shilkin, N. A. Ponomarev, E. G. Semutnikova, and P. V. Zakharova, “Weekly patterns and weekend effects of air pollution in the Moscow megacity,” Atmos. Environ. 224, 54–64 (2020). https://doi.org/10.1016/j.atmosenv.2020.117303

    Article  Google Scholar 

  22. V. I. Dianov-Klokov, L. N. Yurganov, E. I. Grechko, and A. V. Dzhola, “Spectroscopic measurements of atmospheric carbon monoxide and methane. 1: Latitudinal distribution,” J. Atmos. Chem. 8 (2), 139–151 (1989).

    Article  Google Scholar 

  23. L. N. Yurganov, E. I. Grechko, and A. V. Dzhola, “Long-term measurements of carbon monoxide over Russia using a spectrometer of medium resolution,” Recent Res. Dev. Geophys., No. 4, 249–265 (2002).

  24. R. D. Kuznetsov, “LATAN-3 sodar for investigation of the atmospheric boundary layer,” Opt. Atmos. Okeana 20 (8), 749–753 (2007).

    Google Scholar 

  25. H. H. Aumann, M. T. Chahine, C. Gautier, M. Goldberg, E. Kalnay, L. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. Staelin, L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing systems,” IEEE Trans. Geosci. Remote Sens. 41 (2), 253–264 (2003).

    Article  Google Scholar 

  26. W. W. McMillan, K. D. Evans, C. D. Barnet, E. S. Maddy, G. W. Sachse, and G. S. Diskin, “AIRS V5 CO retrieval with DACOM in situ measurements,” IEEE Trans. Geosci. Remote Sens. 49, 1–12 (2011). https://doi.org/10.1109/TGRS.2011.2106505

    Article  Google Scholar 

  27. AIRS/AMSU/HSB Version 6 Data Release User Guide, Ed. by E. T. Olsen (JPL, Pasadena, Calif., 2017). https:// docserver.gesdisc.eosdis.nasa.gov/repository/Mission/ AIRS/3.3_ScienceDataProductDocumentation/3.3_ ScienceDataProductDocumentation/3.3.4_ProductGenerationAlgorithms/V6_Data_Release_User_Guide.pdf.

    Google Scholar 

  28. A. F. Stein, R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, “NOAA’s HYSPLIT atmospheric transport and dispersion modeling system,” Bull. Amer. Meteorol. Soc. 96, 2059–2077 (2015).

    Article  Google Scholar 

  29. Sitnov S.A., Mokhov I.I., Gorchakov G.I. “The link between smoke blanketing of European Russia in summer 2016, Siberian wildfires and anomalies of large-scale atmospheric circulation,” Dokl. Earth Sci. 472 (4), 456-461 (2017).

    Article  Google Scholar 

  30. V. S. Rakitin, A. I. Skorokhod, N. V. Pankratova, Yu. A. Shtabkin, A. V. Rakitina, G. Wang, A. V. Vasilieva, M. V. Makarova, and P. Wang, “Recent changes of atmospheric composition in background and urban Eurasian regions in XXI century,” IOP Conf. Ser.: Earth Environ. Sci. 606, 012048 (2020).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-17-10275. The analysis of satellite information was carried out as part of the Russian Science Foundation, project no. 20-17-00200.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Rakitin, N. F. Elansky, A. I. Skorokhod, A. V. Dzhola, A. V. Rakitina, A. V. Shilkin, N. S. Kirillova or A. V. Kazakov.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakitin, V.S., Elansky, N.F., Skorokhod, A.I. et al. Long-Term Tendencies of Carbon Monoxide in the Atmosphere of the Moscow Megapolis. Izv. Atmos. Ocean. Phys. 57, 116–125 (2021). https://doi.org/10.1134/S0001433821010102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821010102

Keywords:

Navigation