Skip to main content
Log in

Clarification of Tectonic and Geodynamic Models of the Alpine–Himalayan–Indonesian Mobile Belt Extremities Based on Matching Views about the Wide and Narrow Tethys Paleocean

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Based on the available geological and geodetic data, it has been established that the structures of the Alpine–Himalayan–Indonesian mobile belt are oroclinally (horseshoe-shaped) closed at its western and eastern extremities. In the west, from the Atlantic Ocean, this closure is represented by the Bet–RIF arc and, in the east, from the Pacific Ocean, by the Band and Mindanao arcs. The presence of these closures means there is no structural connection between the mobile belt under discussion and the Atlantic and Pacific oceans, respectively. Thus, the existing plate-tectonic reconstructions, according to which the Tethys paleocean was a wide bay of the Pacific Ocean connected in the west with the Atlantic Ocean (wide Tethys), are in opposition to the facts. The Alpine–Himalayan–Indonesian mobile belt has to be considered an epigeosynclinal rather than an epioceanic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Altamimi, Z., Sillard, P., and Boucher, C., Itrf2000: a new release of the international terrestrial reference frame for earth science applications, J. Geophys. Res., 2002, vol. 107, no. B10, p. 2214.

    Google Scholar 

  2. Anzidei, M., Baldi, P., Casula, G., et al., Insights into present-day crustal motion in the Central Mediterranean area from GPS surveys, Geophys. J. Int., 2001, vol. 146, no. 1, pp. 98–110.

    Article  Google Scholar 

  3. Arkhipov, I.V., An overview of the tectonics of the Indonesian Archipelago islands, in Kainozoiskie tektonicheskie zony periferii Tikhogo okeana (Cenozoic Tectonic Zones of the Pacific Ocean Periphery), vol. 113 of Tr. GIN AN SSSR (Proc. Geol. Inst. Acad. Sci. USSR), Moscow: Nauka, 1964, pp. 88–136.

  4. Aubouin, J., Geosynclines, Amsterdam: Elsevier, 1965; Moscow: Mir, 1967.

  5. Audley-Charles, M.G., Banda Arcs. Sulavesi, in Mezozoisko-kainozoiskie skladchatye poyasa (Mesozoic–Cenozoic Orogenic Belts), Moscow: Mir, 1977, vol. 1, pp. 419–452.

  6. Belostotskii, I.I., Stroenie i formirovanie tektonicheskikh pokrovov (The Structure and Formation of Tectonic Sheets), Moscow: Nedra, 1978.

  7. Belousov, V.V., Plate tectonics and tectonic generalizations, Geotektonika, 1991, no. 2, pp. 3–12.

  8. Bock, J.Y., Prawirodirdjo, L., Genrich, J.F., et al., Crustal motion in Indonesia from global positioning system measurements, J. Geophys. Res., 2003, vol. 108, no. B8, p. 2367.

    Article  Google Scholar 

  9. Briggs, R.W., Sieh, K., Meltzner, A.J., et al., Deformation and slip along the Sunda megathrust in the great 2005 Nias-Simeulue earthquake, Science, 2006, vol. 311, no. 5769, pp. 1897–1901.

    Article  Google Scholar 

  10. Buforn, E., Sanz de Galdeano, C., and Udias, A., Seismotectonics of the Ibero-Maghrebian region, Tectonophysics, 1995, vol. 248, no. 3, pp. 247–261.

    Article  Google Scholar 

  11. Dewey, J.W., Choy, G., Presgrave, B., et al., Seismicity associated with the Sumatra–Andaman Islands earthquake of 26 December 2004, Bull. Seismol. Soc. Am., 2007, vol. 96, no. 1A, pp. 25–42.

    Article  Google Scholar 

  12. Ding, L., Dalai Zh., An Y., et al., Cenozoic structural and metamorphic evolution of the Eastern Himalayan Sintaxis (Namche Barwa), Earth Planet. Sci. Lett., 2001, vol. 192, pp. 423–438.

    Article  Google Scholar 

  13. DiPietro, J.A. and Poque, K.R., Tectonostratigraphic subdivisions of the Himalaya: a view from the west, Tectonics, 2004, vol. 23, no. 5, pp. TC5001.

    Article  Google Scholar 

  14. Fernandes, R., Ambrosius, B., and Noomen, R., Analysis of a permanent GPS Iberian Network (GIN), The 10th General Assembly of the WEGENER Project: Book of Extended Abstracts, 2000, pp. 69–72.

  15. Gansser, A., Geology of the Himalayas, New York: Wiley, 1964; Moscow: Mir, 1967.

  16. Gansser, A., The geodynamic history of the Himalaya, in Zagros, Hindu Kush, Himalaya, Geodynamic Evolution, vol. 3 of Am. Geophys. Union, Geodyn. Ser., Gupta, H.K. and Delany, F.M., Eds., 1981, pp. 111–121.

  17. Gatinskii, Yu.G., Lateral’nyi strukturno-formatsionnyi analiz (Lateral Structural-Formational Analysis), Moscow: Nedra, 1986.

  18. Gatinskii, Yu.G., Kudryavtsev, G.A., and Mishina, A.V., On the “Mesozoids” of Southeast Asia, Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol., 1972, no. 4, pp. 62–70.

  19. Gordienko, V.V., Criticisnm of plate tectonics hypothesis, Glubin. Neft’, 2014, vol. 2, no. 3, pp. 413-442.

    Google Scholar 

  20. Gordienko, V.V., On the plate tectonics hypothesis, Geofiz. Zh., 2013, vol. 35, no. 6, pp. 71–100.

    Google Scholar 

  21. Guillot, S., Matheo, G., de Sigoyer, J., et al., Tethyan and Indian subduction viewed from Himalayan high - to ultra high-pressure metamorphic rocks, Tectonophysics, 2008, vol. 451, no. 1–4, pp. 225–241.

    Article  Google Scholar 

  22. Haile, N.S., Borneo, in Mezozoisko-kainozoiskie skladchatye poyasa (Mesozoic–Cenozoic Orogenic Belts), Moscow: Mir, 1977, vol. 1, pp. 402–418.

  23. Hall, R., van Hattum, M.W.A., and Spakman, W., Impact of India–Asia collision on SE Asia: the record in Borneo, Tectonophysics, 2008, vol. 451, no. 1–4, pp. 366–389.

    Article  Google Scholar 

  24. Hermes, J.J., West Irian, in Mezozoisko-kainozoiskie skladchatye poyasa (Mesozoic–Cenozoic Orogenic Belts), Moscow: Mir, 1977, vol. 2, pp. 108–124.

  25. Hsu, Y.-J., Simons, M., Avouac, J.-P., et al., Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra, Science, 2006, vol. 312, no. 5782, pp. 1921–1926.

    Article  Google Scholar 

  26. Illarionov, V.K. and Boiko, A.N., Geological structure and specifics of the Meso-Cenozoic development of the southern part of the East Indian Ridge, Indian Ocean, Geol. Polezn. Iskopaemye Mir. Okeana, 2018, no. 3, pp. 62–71.

  27. Illarionov, V.K. and Boiko, A.N., On the geodynamic aspects of the evolution of the northeastern Indian Ocean, Geofiz. Prots. Biosfera, 2017, vol. 16, no. 4, pp. 122–134. doi 10. 21455/GPB2017.4-10

  28. Illarionov, V.K., Boiko, A.N., and Borisova, A.Yu., A new model of the Ninety East Ridge formation, Indian Ocean, Izv., Atmos. Ocean. Phys., 2019, vol. 55, pp. 1787–1802. https://doi.org/10.1134/S0001433819110203

    Article  Google Scholar 

  29. Illarionov, V.K., Boiko, A.N., and Udintsev, G.B., The ocean floor morphostructure of the Bay of Bengal (Indian Ocean) and the problem of its origin, Izv., Phys. Solid Earth, 2016, vol. 52, no. 3, pp. 382–398.

    Article  Google Scholar 

  30. Imayama, T. and Arita, K., Nd isotopic data reveal the material and tectonic nature of the main central thrust zone in Nepal Himalaya, Tectonophysics, 2008, vol. 451, no. 1–4, pp. 265–281.

    Article  Google Scholar 

  31. Karig, D.E., Suparka, S., Moore, G.F., and Hehanussa, P.E., Structure and Cenozoic evolution of the Sunda arc in the central Sumatra region, in Geological and Geophysical Investigations of Continental Slopes and Rises, Watkins, J., Montadert, L., and Dickinson, P., Eds., Washington, DC: Amer. Ass. of Petrol. Geol, 1979, pp. 223–237.

    Google Scholar 

  32. Karig, D.E., Lawrence, M.B., Moore, G.F., and Curray, J.R., Structural framework of the fore-arc basin, NW Sumatra, J. Geol. Soc., 1980, vol. 137, pp. 77–91.

    Article  Google Scholar 

  33. Katili, J.A., Sumatra, in Mezozoisko-kainozoiskie skladchatye poyasa (Mesozoic–Cenozoic Orogenic Belts), Moscow: Mir, 1977, vol. 1, pp. 387–401.

  34. Khain, V.E., Regional’naya geotektonika. Al’piiskii Sredizemnomorskii poyas (Regional Geotectonics. The Alpine-Mediterranean Belt), Moscow: Nedra, 1984.

  35. Konca, A.O., Hjorleifsdottir, V., and Song, T.-R.A., Rupture kinematics of the 2005 Mw 8.6 Nias-Simeulue earthquake from the joint inversion of seismic and geodetic data, Bull. Seismol. Soc. Am., 2007, vol. 91, no. 1A, pp. 307–322.

    Article  Google Scholar 

  36. Kopp, H., Fluch, E.R., Klaeschen, D., Bialas, J., and Reichert, C., Crustal structure of the central Sunda margin at the onset of oblique subduction, Geophys. J. Int., 2001, vol. 147, no. 2, pp. 449–474.

    Article  Google Scholar 

  37. Kuenen Ph.H., Indonesian deep-sea depressions, in Ostrovnye dugi (Island Arcs). Moscow: Inostr. Liter., 1952, pp. 97–134.

  38. Lamb, M.A., Badarch, G., Navratil, T., and Poier, R., Structural and geochronologic data from the Shin Jinst area, Eastern Gobi Altai, Mongolia: implication for phanerozoic intracontinental deformation in Asia, Tectonophysics, 2008, vol. 451, no. 1–4, pp. 312–330.

    Article  Google Scholar 

  39. Lay, T., Kanamori, H., Ammon, Ch.J., et al., The great Sumatra-Andaman earthquake of 26 December 2004, Science, 2005, vol. 308, no. 5725, pp. 1127–1133.

    Article  Google Scholar 

  40. Leloup, P.H., Arnaud, N., Lacassin, R., et al., New constraints on the structure, thermochronology and timing of the Ailao Shan-Read river shear zone, SE Asia, J. Geophys. Res., 2001, vol. 106, no. B4, pp. 6683–6732.

    Article  Google Scholar 

  41. Leloup, P.H., Maheo, G., Arnaud, N., et al., The south Tibet detachment shear zone in the Dinggye area: time constraints on extrusion model of the Himalayas, Earth Planet. Sci. Lett., 2010, vol. 292, no. 1–2, pp. 1–16.

    Article  Google Scholar 

  42. Lukk, A.A. and Shevchenko, V.I., Peculiarity of the relationship between the seismicity and tectonic structure of the Pyrenees, Izv., Phys Solid Earth, 2018, vol. 54, pp. 415–429. https://doi.org/10.1134/S1069351318030060

    Article  Google Scholar 

  43. Lukk, A.A. and Shevchenko, V.I., Seismicity, tectonics, and GPS geodynamics of the Caucasus, Izv., Phys. Solid Earth, 2019, vol. 55, no. 4, pp. 626–648. https://doi.org/10.1134/S1069351319040062

    Article  Google Scholar 

  44. McCarthy, M.R. and Weinberg, R.F., Structural complexity resulting from pervasive ductile deformation of the Karakoram shear zone, NW India, Tectonics, 2010, vol. 29, no. 3, p. TC3004.

    Article  Google Scholar 

  45. Mei, H.-J., The ophiolites of the Qinghai-Xizang (Tibet) Plateau and the Cenozoic rift magmatism in the Qing-Zang terrain, in Geology and Geodynamic Evolution of the Himalayan Collision Zone, Sharma, K.K., Ed., New York: Pergamon, 1991, pp. 195–219.

    Google Scholar 

  46. Meiergoff, A. and Meiergoff, G., New global tectonics: the major controversies, in Novaya global’naya tektonika (New Global Tectonics), Moscow: Mir, 1974, pp. 377–445.

  47. Michel, G.W., Becker, M., Angermann, D., et al., Crustal motion in E- and SE-Asia from GPS measurements, Earth Planets Space, 2000, vol. 52, pp. 713–720.

    Article  Google Scholar 

  48. Michel, G.W., Yu, Y.Q., Zhu, Sh.Y., et al., Crustal motion and block behaviour in SE-Asia from GPS measurements, Earth Planet. Sci. Lett., 2001, vol. 187, pp. 239–244.

    Article  Google Scholar 

  49. Mishina, A.V., Late Paleozoic and Mesozoic of the Indonesia–Philippine region, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 1979, no. 4, pp. 46–57.

  50. Mitsuishi, M., Wallis, S.R., Aoya, M., et al., E-W extension at 19 Ma in the Kung Co area, S.Tibet: evidence for contemporaneous E–W and N–S extension in the Himalayan orogeny, Earth Planet. Sci. Lett., 2012, vol. 325–326, pp. 10–20.

    Article  Google Scholar 

  51. Moore, G.F. and Karig, D.E., Structural geology of Nias island, Indonesia: implications for subduction zone tectonics, Am. J. Sci., 1980, vol. 280, pp. 193–223.

    Article  Google Scholar 

  52. Pushcharovskii, Yu.M. and Melankholina, E.N., Tektonicheskoe razvitie Zemli: Tikhii okean i ego obramlenie (Tectonic Development of the Earth: The Pacific Ocean and Surrounding Regions) vol. 473 of Tr. GIN AN SSSR (Proc. Geol. Inst. Acad. Sci. USSR), Moscow: Nauka, 1992.

  53. Ramakrishnan, M. and Vaidyanadhan, R., Geology of India, Bangalore: Geol. Soc. of India, 2008, vol. 1, p. 556.

    Google Scholar 

  54. Rodnikov, A.G., Ostrovnye dugi zapadnoi chasti Tikhogo okeana (Island Arcs of the Western Pacific Ocean), Moscow: Nauka, 1979.

  55. Rodnikov, A.G., Zabarinskaya, L.P., Rashidov, V.A., et al., Deep structure of continental margins of the South China Sea area, Vestn. KRAUNTs. Nauki Zemle, 2011, no. 2 (18), pp. 52–72.

  56. Sheinmann, Yu.M., New global tectonics and reality, Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol., 1973, no. 5, pp. 5–28.

  57. Shevchenko, V.I., Guseva, T.V., Dobrovolsky, I.P., Krupennikova, I.S., and Lukk, A.A., Autonomous (non-plate-tectonic) geodynamics of the Pyrenees, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 8, pp. 826–847. https://doi.org/10.1134/S000143381808011X

    Article  Google Scholar 

  58. Shevchenko, V.I. and Lukk, A.A., Autonomous folding and thrusting in the Earth’s crust, Zemlya Vselennaya. 2018, no. 5, pp. 42–54. https://doi.org/10.31857/SOO4439480002476-4

  59. Shevchenko, V.I., Lukk, A.A., and Guseva, T.V., Avtonomnaya i pleittektonicheskaya geodinamiki nekotorykh podvizhnykh poyasov i sooruzhenii (Autonomous and Plate-Tectonic Geodynamics of Some Mobile Belts and Structures), Moscow: GEOS, 2017.

  60. Shevchenko, V.I., Lukk, A.A., and Guseva, T.V., Non-plate-tectonic (autonomous) folding and thrusting in the Earth’s crust, Izv., Atmos. Ocean. Phys., 2019, vol. 55, pp. 1488–1516. https://doi.org/10.1134/S0001433819100098

    Article  Google Scholar 

  61. Shlezinger, A.E., Tectonic structures of the Earth’s crust, Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol., 2003, no. 3, pp. 3–10.

  62. Stille, G., Tectonic development of the Indochina Peninsula and the islands of Southeast Asia, in Izbrannye Trudy (Selected Works), Moscow: Mir, 1964, pp. 395–493.

  63. Shvol’man, V.A., Tectonics of the Filippine archipelago, in Kainozoiskie tektonicheskie zony periferii Tikhogo okeana (Cenozoic Tectonic Zones of the Pacific Ocean Periphery), vol. 113 of Tr. GIN AN SSSR (Proc. Geol. Inst. Acad. Sci. USSR), Moscow: Nauka, 1964, pp. 47–87.

  64. Simons, W.J.F., Socquet, A., Vigny, C., et al., A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries, J. Geophys. Res., 2007, vol. 112, no. B06420.

  65. Singh, A., Kumar, M.R., and Raju, P.S., Seismic structure of the underthrusting Indian crust in Sikkim Himalaya, Tectonics, 2010a, vol. 29, no. 6, pp. TC6021.

    Article  Google Scholar 

  66. Singh, S.C., Hananto, N.D., Chauhan, A.P.S., et al., Evidence of active backthrusting at the NE margin of Mentawai islands, SW Sumatra, Geophys. J. Int., 2010b, vol. 180, no. 2, pp. 703–714.

    Article  Google Scholar 

  67. Tseisler, V.M., Alpine foredeeps in the Mediterranean-Indonesian movable belt, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 2000, no. 6, pp. 3–10.

  68. Tseisler, V.M., Foredeeps and subduction zones, Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol., 1993, no. 1, pp. 120–122.

  69. Tseisler, V.M., Neogene-Quaternary foredeeps and their relation to deep-sea trenches, in Spornye aspekty tektoniki plit i vozmozhnye al’ternativy (Debatable Aspects of Plate Tectonics and Possible Alternatives), Moscow: OIFZ RAN, 2002, pp. 224–230.

  70. Tseisler, V.M., Mobile belts and oceans, Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol., 1998, no. 6, pp. 8–12.

  71. Umbgrove, J., Island arcs, in Ostrovnye dugi (Island Arcs). Moscow: Inostr. Liter., 1952, pp. 5–96.

  72. Wu, F.-Y., Clift, P.D., and Yang, J.-H., Zircon HF isotopic constraints on the sources of the Indus molasse, Ladakh Himalaya, India, Tectonics, 2007, vol. 26, no. 2, pp. TC2014, 1.

  73. Yanshin A.L. The tectonic structure of Eurasia, Geotektonika, 1965, no. 5, pp. 7–35.

  74. Zonenshain, L.P., Dercourt, J., Kaz’min, V.G., et al., Evolution of the Tethys, in Istoriya okeana Tetis (History of the Tethys Ocean), Moscow: Inst. Okeanol. Akad. Nauk SSSR, 1987, pp. 104–115.

Download references

Funding

This work was performed as part the State Task of Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (no. 0144-2019-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lukk.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by D. Voroshchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.I., Lukk, A.A. & Leonova, V.G. Clarification of Tectonic and Geodynamic Models of the Alpine–Himalayan–Indonesian Mobile Belt Extremities Based on Matching Views about the Wide and Narrow Tethys Paleocean. Izv. Atmos. Ocean. Phys. 56, 1337–1345 (2020). https://doi.org/10.1134/S0001433820110080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820110080

Keywords:

Navigation